Inhaltsverzeichnis

1 Methodennutzungsmodell zur Informationsgewinnung in großen Netzen der Logistik

Dirk Jodin, Sonja Kuhnt und Sigrid Wenzel

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Einleitung</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Aufbau des Methodennutzungsmodells</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Vorgehensmodell zur integrativen Methodennutzung</td>
<td>4</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Bedeutung und Inhalt der Taxonomien</td>
<td>8</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Methoden</td>
<td>10</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Metainformationsschicht</td>
<td>13</td>
</tr>
<tr>
<td>1.3</td>
<td>Anwendung des Methodennutzungsmodells</td>
<td>14</td>
</tr>
<tr>
<td>1.4</td>
<td>Ausblick</td>
<td>15</td>
</tr>
</tbody>
</table>

2 ProC/B: Eine Modellierungsumgebung zur prozessketten-orientierten Beschreibung und Analyse logistischer Netze

Falko Bause, Heinz Beilner und Jan Kriege

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Einleitung</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>ProC/B-Modelle</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>Analysetechniken und Tools</td>
<td>31</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Ereignisorientierte Simulation</td>
<td>33</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Numerische Analyse von zeitkontinuierlichen Markov-Ketten</td>
<td>37</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Algebraisch-numerische Analyse von Produktformnetzen</td>
<td>42</td>
</tr>
<tr>
<td>2.4</td>
<td>Weitere Modellstudien</td>
<td>46</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Ausfälle und Wartung</td>
<td>46</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Passive Ressourcen</td>
<td>49</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Mobile Ressourcen</td>
<td>50</td>
</tr>
<tr>
<td>2.5</td>
<td>Fazit</td>
<td>53</td>
</tr>
</tbody>
</table>

3 Simulation von SCM-Strategien

Markus Witthaut und Bernd Hellingrath

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Einleitung</td>
<td>60</td>
</tr>
<tr>
<td>3.2</td>
<td>SCM-Strategien</td>
<td>61</td>
</tr>
</tbody>
</table>
5.8 Mathematische Problemformulierung ... 113
5.9 Exakte Lösungsansätze .. 117
5.10 Heuristischer Lösungsansatz ... 117
5.11 Problemreduktion .. 118
5.12 Savings-Ansatz .. 119
5.13 Sternoptimierung .. 121
5.14 Beispielergebnisse ... 125
5.15 Zusammenfassung und Ausblick ... 125

6 Leistungsbewertung verschiedener Optimierverfahren für das p-Hub-Problem .. 129
Hilmar Heinrichmeyer
6.1 Service-Netze ... 130
6.2 P-Hub-Problem .. 130
6.3 Bewertungsmodell .. 131
6.4 Kennzahlen .. 132
6.5 Beschreibung der untersuchten Optimierungsmethoden 136
 6.5.1 Vollständige Enumeration ... 136
 6.5.2 Neighborhood Search-Verfahren nach Klincewicz 137
 6.5.3 Individuenbasierter evolutionärer Algorithmus 137
 6.5.4 Populationsbasierter evolutionärer Algorithmus 138
6.6 Probleminstanzen .. 139
6.7 Auswertungsumfang ... 139
6.8 Leistungsbewertung ... 141
6.9 Einordnung der Ergebnisse .. 144
6.10 Komplexitätsklassen ... 145
6.11 Anwendung auf weitere Probleminstanzen 148
6.12 Zusammenfassung und Ausblick .. 149

7 Ein prozess- und objektorientiertes Modellierungskonzept für praxisnahe Rich Vehicle Routing Problems ... 153
Andreas Reinholz und Holger Schneider
7.1 Einleitung .. 153
7.2 Vehicle Routing Problem ... 154
 7.2.1 Definition: Capacitated Vehicle Routing Problem 154
 7.2.2 Definition: Tour .. 155
 7.2.3 Definition: Tourenplan ... 155
7.3 Modellierungskonzept ... 157
 7.3.1 Aufbau .. 157
 7.3.2 Verbrauchsberechnung ... 164
 7.3.3 Operationen .. 164
7.4 Risikomanagement .. 166
7.5 Optimierungsverfahren ... 167
 7.5.1 Variable Nachbarschaftssuche und Hybride Evolutionsstrategie 168
7.5.2 Verwendete Nachbarschaftssuchen 169
7.5.3 Beschleunigte Funktionsauswertung durch das Superkunden-Konzept 171
7.6 Leistungsbewertung .. 173
 7.6.1 VRP mit offenen Touren 173
 7.6.2 VRP mit Rückläufen und Zeitfenstern 174
 7.6.3 VRP mit mehreren Depots 176
7.7 Zusammenfassung .. 176

8 Optimierung ereignis-diskreter Simulationsmodelle im ProC/B-Toolset 181
Markus Arns, Peter Buchholz und Dennis Müller
8.1 Einleitung .. 181
8.2 Optimierverfahren ... 183
 8.2.1 Die Response Surface Methode 184
 8.2.2 Pattern Search ... 190
 8.2.3 Evolutionäre Algorithmen 192
 8.2.4 Kriging-Metamodelle 193
 8.2.5 Kombination globaler und lokaler Suchverfahren 196
 8.2.6 Einbeziehung von Nebenbedingungen 197
 8.2.7 Berücksichtigung stochastischer Resultate 198
8.3 Das Optimierwerkzeug OPEDo 200
8.4 Benchmark der Optimierungsverfahren anhand einer multimodalen Benchmarkfunktion 202
 8.4.1 Versuche ... 203
8.5 Optimierung der Stückgutumschlaghalle eines GVZ 205
 8.5.1 Versuchsaufbau und Ergebnisse 207
8.6 Zusammenfassung .. 208

9 Der Mensch als Planer, Operateur und Problemlöser in logistischen Systemen 211
Doris Blutner, Stephan Cramer und Tobias Haertel
9.1 Einleitung .. 211
9.2 Techniksoziologie und Prozesskettenparadigma (Stephan Cramer) 212
 9.2.1 Der soziotechnische Systemansatz und die systemische Perspektive des Prozesskettenparadigmas 212
 9.2.2 Zur Steuerung komplexer Systeme 212
 9.2.3 Steuerungsmodi ... 213
 9.2.4 Hybridität und veränderte Akteurskonstellationen 214
 9.2.5 Aspekte des Prozesskettenparadigmas in techniksoziologischer Perspektive, Gemeinsamkeiten und Unterschiede 214
 9.2.6 Anschlussmöglichkeiten zum Prozesskettenparadigma 215
Inhalt

9.3 Sozialwissenschaftliche Befunde zur Mensch-Maschine Interaktion (Tobias Haertel) ... 217
9.3.1 Einleitung .. 217
9.3.2 Die Rolle der Menschen bei der Entwicklung neuer Technologien ... 217
9.3.3 Verfahren zur „optimalen“ Gestaltung der Mensch-Maschine-Interaktion ... 219
9.3.4 Gestaltungsalternativen .. 220
9.4 Das Containerterminal Altenwerder (CTA) als hybrides System und die Rolle des Menschen als Problemlöser (Stephan Cramer) ... 221
9.4.1 Einleitung: Containerterminals, Automation und die techniksoziologische Hybridperspektive 221
9.4.2 Die Prozesskette auf dem Terminal 222
9.4.3 Die Selbststeuerung autonomer Fahrzeuge 223
9.4.4 Flexibilität, Problembehebung und die Rolle des Menschen ... 225
9.4.5 Fazit .. 226
9.5 Der Mensch als aktiver Mitspieler. Mensch-Maschine-Interaktionen im Luftfrachtterminal (Doris Blutner) 227
9.5.1 Einleitung ... 227
9.5.2 Zeit als Leitressource im logistischen System Luftfracht im Luftfrachtterminal .. 227
9.5.3 Informationstechnisch gestützte Disponentenarbeit vor Ort: Wer das Problem hat, hat die Lösung 228
9.5.4 Fazit .. 231
9.6 Der Mensch als Problemlöser in logistischen Prozessketten im Straßengüterverkehr (Tobias Haertel) 231
9.7 Zusammenfassung der Fallstudien .. 233
9.8 Eine techniksoziologische Variante der Parametervariation 234
9.9 Fazit .. 235
10 Assistenzsysteme für die Entscheidungsunterstützung 241
Doris Blutner, Stephan Cramer, Sven Krause, Tycho Mönks, Lars Nagel, Andreas Reinho1z und Markus Witthaut
10.1 Einleitung ... 241
10.2 Konzeptioneller Rahmen .. 241
10.2.1 Fokus: Entscheidungsunterstützung 241
10.2.2 Assistenzsysteme zur Entscheidungsunterstützung: Definition und Merkmale ... 242
10.2.3 Vorhandene Taxonomien für Assistenzsysteme, Automatisierungsstufen und die Verteilung von Entscheidungen zwischen Menschen und Rechnern 243
10.2.4 Art der Entscheidungsunterstützung 244
10.2.5 Arbeitsteilung zwischen Mensch und Maschine 244
10.2.6 Einsatzzweck ... 245
10.2.7 Qualität und Quantität der Entscheidung 246
10.3 Fallbeispiele .. 246
10.3.1 Beladung von Frachtflugzeugen 246
10.3.2 Schiffsführung .. 250
10.3.3 Produktionsprogrammplanung 252
10.3.4 Tourenplanung .. 256
10.3.5 Rohstoffbeschaffung 261
10.3.6 Ressourcenplanung von Güterverkehrszentren 264
10.4 Fazit und Ausblick ... 267
10.5 Nutzungsmöglichkeiten der Workbench zur Unterstützung
 des Planungsprozesses von Güterverkehrszentren 271
 Lars Nagel
11.1 Einleitung ... 271
11.2 Rahmenkonzept zur Modellierung von Planungswissen 272
11.3 Referenz-Vorgehensweise zur Lösung von
 Planungsaufgaben in GNL 274
11.4 Vorstellung des internetbasierten Informationssystems
 „Workbench“ .. 279
11.5 Planung von GVZ als intermodale Knotenpunkte 284
11.6 Nutzung der „Workbench“ zur Unterstützung der
 GVZ-Planung .. 286
11.7 Fazit und Ausblick ... 292
12 Integration des Kosten-, Finanz- und Risikomanagements
 in die Netzwerk-Balanced-Scorecard 297
 Egon Jehle und Britta von Haaren
12.1 Forschungslücken in der Netzwerk-Balanced Scorecard 297
12.2 Einbindung kostenmäßiger, finanzieller und
 risikoorientierter Elemente in die SC-Balanced Scorecard
 als wichtigster Realtyp der NW-BSC 300
12.2.1 Einbindung des SC-Kostenmanagements in
 die SC-BSC in Form der Simulationsgestützten
 Prozesskostenrechnung 300
12.2.2 Erweiterung der SC-BSC um das
 Supply Chain Finance 301
12.2.3 Einbindung des SC-Risikomanagements in
 die SC-BSC .. 312
12.3 Integration des SC-Costing, des SC-Finance und des
 SC-Risikomanagements in die SC-BSC 314
12.4 Fazit ... 319
13 Analyse und Modellierung von Redistributionsnetzen ... 323
 Rolf Jansen, Jan Hustadt und Stefan Pietzarka
 13.1 Einleitung ... 323
 13.1.1 Mehrwegtransportverpackungen ... 323
 13.1.2 Mehrwegsysteme ... 325
 13.2 Modellierung und Simulation von Redistributionsnetzen 328
 13.2.1 KOMPASS-Modell ... 328
 13.2.2 Dortmunder Prozesskettenparadigma und ProC/B 331
 13.2.3 Systemdynamische Modellierung ... 332
 13.3 Die Kreislaufwirtschaft als redistributionsähnliches System 333
 13.3.1 Analyse redistributionsähnlicher Systeme .. 334
 13.3.2 Konzepte einer kreislaufbezogenen Modellierung 337
 13.4 RFID zur Informationsgewinnung ... 345
 13.4.1 Grundlagen der RFID-Technologie .. 345
 13.4.2 Vorgehen zur Implementierung von RFID-Infrastruktur 348
 13.5 Zusammenfassung ... 350

14 Modell zur Bewertung der Kostenreduktion im Luftfrachttransportnetz durch eine angepasste, standortübergreifende Frachtflosssteuerung ... 355
 Uwe Clausen und Harald Sieke
 14.1 Einführung ... 356
 14.1.1 Überblick Luftfracht ... 356
 14.1.2 Problemstellung ... 357
 14.1.3 Typisches Luftfrachtnetz .. 358
 14.2 Grundlagen und Definitionen .. 359
 14.3 Stand der Wissenschaft ... 363
 14.4 Entwicklung des Simulationsmodells ... 363
 14.4.1 Strategieauswahl ... 364
 14.4.2 Experimentierreihen .. 365
 14.4.3 Systemlast .. 367
 14.4.4 Modellbildung .. 369
 14.5 Simulationsergebnisse ... 371
 14.5.1 Belegung der Ressourcen .. 371
 14.5.2 Berücksichtigte Prozesskosten an den Hubs ... 376
 14.6 Zusammenfassung und Ausblick .. 377

15 Modellierung und Analyse trimodaler Seehafen hinterlandverkehre unter Einsatz eines intermodalen geographischen Informationssystems .. 381
 Florian Schwarz
 15.1 Einführung ... 382
 15.2 Zielsetzung ... 383
15.3 Modellierungsansätze für intermodale Transporte 384
 15.3.1 Geographische Informationssysteme (GIS)
 für intermodale Transporte 387
 15.3.2 Neuer Modellierungsansatz für intermodale Transporte ... 389
15.4 Ergebnisse der Szenarienrechnungen 394
15.5 Zusammenfassung und Ausblick 398

Sachverzeichnis .. 403
Große Netze der Logistik
Die Ergebnisse des Sonderforschungsbereichs 559
Buchholz, P.; Clausen, U. (Hrsg.)
2009, XVI, 405 S., Hardcover
ISBN: 978-3-540-71047-9