Contents

1 Introduction ... 1

2 Point Defects in LiNbO₃ 9
 2.1 Intrinsic Defect Structure of LiNbO₃ 10
 2.2 Point Defects Induced in LiNbO₃ by a Reduction Treatment
 and the Polaron Model ... 14
 2.3 Hydrogen in the LiNbO₃ Lattice 24
 2.4 Photorefractive and Relative Impurity Ions
 in the LiNbO₃ Lattice .. 27
 2.5 Optical-Damage-Resistant (Non-Photorefractive)
 Impurity Ions in the LiNbO₃ Lattice and Their Impact
 2.5.1 Incorporation of the Optical-Damage-Resistant Ions
 into the Lattice ... 34
 2.5.2 Effect of Optical-Damage-Resistant Impurities
 on the Incorporation of Other Impurity Ions 44
 2.5.3 OH-Spectra in Optical-Damage-Resistant LiNbO₃
 Crystals ... 48

3 General Introduction to Photorefraction in LiNbO₃ 51
 3.1 Background with Basic Relations 52
 3.2 Photoinduced Charge Transport in LiNbO₃ Crystals 58
 3.2.1 Dark Conductivity in LiNbO₃ 59
 3.2.2 One-Center Charge Transport Scheme in LiNbO₃ 62
 3.2.3 Two-Center Charge Transport Scheme in LiNbO₃:
 The Intrinsic Defects as Secondary Electron Traps 68

4 Photorefraction in LiNbO₃ Crystals
 with Different Stoichiometry and/or Doped
 with Optical-Damage-Resistant Impurities 75
 4.1 Photorefractive Properties of Near-Stoichiometric LiNbO₃
 Crystals ... 76
4.2 Photorefraction in LiNbO$_3$ Crystals Doped with Optical-Damage-Resistant Ions 82
 4.2.1 Photorefractive Properties of Optical-Damage-Resistant Compositions 82
 4.2.2 Fundamental Changes of the Charge Transport Process Produced by ODRI in LiNbO$_3$: Charge Transport Process in LiNbO$_3$ Crystals Doped with ODRI ... 85
 4.2.3 Dark-Trace and GRIIRA (BLIIRA) Effects in Optical-Damage-Resistant LiNbO$_3$ Crystals 94
 4.2.4 LiNbO$_3$ with Optical-Damage-Resistant Impurities as Media for the Photorefractive Recording 97

5 Problem of a Non-Erasable Photorefractive Hologram 103
 5.1 Two-Color Holography .. 104
 5.1.1 Principles of the Two-Color Holography 104
 5.1.2 Two-Step Recording via Short-Living Centers (Gating Process) .. 106
 5.1.3 Two-Color Recording in Doubly-Doped Crystals 114
 5.2 Thermal Hologram Fixation 117
 5.2.1 Basics and the Theoretical Approach of Thermal Fixing .. 118
 5.2.2 Experimental Studies in the Thermal Fixing 127
 5.2.3 Thermal Fixing of Holograms in Other Photorefractive Materials 132
 5.2.4 Attempts of Practical Applications of Thermal Hologram Fixing in LiNbO$_3$ 135
 5.2.5 Conclusions for Thermal Hologram Fixation 137

6 Properties to Characterize Undoped and Optical-Damage-Resistant LiNbO$_3$ Crystals 139
 6.1 Methods to Measure the Composition and Homogeneity of Crystals .. 139
 6.1.1 Melt Composition and Curie Temperature 140
 6.1.2 UV Absorption Edge .. 142
 6.1.3 Homogeneity .. 143
 6.2 Refractive Indices and Birefringence: A Generalized Sellmeier Equation 143
 6.3 Phase-Matching Temperature and Angle 148
 6.4 Electro-Optic Properties 150

7 Polarization Reversal and Ferroelectric Domains in LiNbO$_3$ Crystals 153
 7.1 Classical Description of the Ferroelectric Switching 153
 7.1.1 Phenomenological Description 154
7.1.2 Model Description of the Domain Dynamics and Ferroelectric Switching ... 161
7.1.3 Experimental Methods for Domain Studies and Polarization Kinetics ... 167
7.1.4 Background of the Optical Frequency Conversion in the Quasi-phasematching (QPM) Regime 173
7.2 Ferroelectric Switching of LiNbO$_3$ and LiTaO$_3$ Crystals .. 176
 7.2.1 First Steps of Regular Domain Pattern Creation in LiNbO$_3$ and LiTaO$_3$ Crystals 177
 7.2.2 Fundamental Role of the Composition in Ferroelectric Switching ... 181
 7.2.3 Photoinduced Effects in Ferroelectric Switching of LiNbO$_3$ and LiTaO$_3$ (Photodomain Effects) 197
 7.2.4 Recording of Ferroelectric Domains by Electron Beams and AFM Voltages: Microstructured Domain Patterns .. 200
 7.2.5 Conclusion ... 209

References .. 213

Index .. 241
Lithium Niobate
Defects, Photorefraction and Ferroelectric Switching
Volk, T.; Wöhlecke, M.
2009, XIV, 250 p. 102 illus., 2 illus. in color., Hardcover
ISBN: 978-3-540-70765-3