
Chapter 2
Basics of Quantum Mechanics

Those who are not shocked when they first come across
quantum theory cannot possibly have understood it.

— N. Bohr [1]

Abstract Before we can start with the quantum mechanical approach to thermody-
namics we have to introduce some fundamental terms and definitions of standard
quantum mechanics for later reference. This chapter should introduce the reader
only to some indispensable concepts of quantum mechanics necessary for the text
at hand, but is far from being a complete overview of this subject. For a complete
introduction we refer to standard textbooks [2–7].

2.1 Introductory Remarks

The shortcomings of classical theories had become apparent by the end of the 19th
century. Interestingly enough, one of the first applications of quantum ideas has
been within thermodynamics: Planck’s famous formula for black body radiation was
based on the hypothesis that the exchange of energy between the container walls and
the radiation field should occur in terms of fixed energy quanta only. Later on, this
idea has been put on firmer ground by Einstein postulating his now well-known rate
equations [8].

Meanwhile quantum mechanics has become a theory of unprecedented success.
So far, its predictions have always been confirmed by experiment.

Quantum mechanics is usually defined in terms of some loosely connected
axioms and rules. Such a foundation is far from the beauty of, e.g., the “principles”
underlying classical mechanics. Motivated, in addition, by notorious interpretation
problems, there have been numerous attempts to modify or “complete” quantum
mechanics.

A first attempt was based on so-called “hidden variables” [9]. Its proponents
essentially tried to expel the non-classical nature of quantum mechanics. More
recent proposals intend to “complete” quantum mechanics not within mechanics,
but on a higher level: by means of a combination with gravitation theory [10], with
psychology [11], or with (quantum-) information theory [12, 13].

While the emergence of classicality from an underlying quantum substrate has
enjoyed much attention recently, it has so far not been appreciated that the under-
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8 2 Basics of Quantum Mechanics

standing of quantum mechanics may benefit also from subjects like quantum ther-
modynamics.

2.2 Operator Representations

In quantum mechanics we deal with systems (Hamilton models), observables, and
states. They all are represented by Hermitian operators. Their respective specifi-
cation requires data (parameters), which have to be defined with respect to an
appropriate reference frame. These frames are operator representations. Let us in
the following consider some aspects of these operator representations in detail. First
we will concentrate on simple systems and their representation.

2.2.1 Transition Operators

If we restrict ourselves to systems living in a finite and discrete Hilbert space H
(a complex vector space of dimension ntot), we may introduce a set of orthonormal
state vectors |i〉 ∈ H . From this orthonormal and complete set of state vectors with

〈i | j〉 = δi j , i, j = 1, 2, . . . , ntot , (2.1)

we can define n2
tot transition operators (in general non-Hermitian)

P̂i j = |i〉〈 j | , P̂†
i j = P̂ji . (2.2)

These operators are, again, orthonormal in the sense that

Tr
{

P̂i j P̂†
i ′ j ′

}
= δi i ′δ j j ′ , (2.3)

where Tr {. . . } denotes the trace operation. Furthermore, they form a complete set
in so-called Liouville space, into which any other operator Â can be expanded,

Â =
∑
i, j

Ai j P̂i j , (2.4)

Ai j = Tr
{

Â P̂†
i j

}
= 〈i | Â| j〉 . (2.5)

The n2
tot parameters are, in general, complex (2n2

tot real numbers). For Hermitian
operators we have, with
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Â† =
∑
i, j

A∗
i j P̂†

i j =
∑
i, j

A ji P̂ji = Â , (2.6)

A∗
i j = A ji , (2.7)

i.e., we are left with n2
tot-independent real numbers. All these numbers must be given

to uniquely specify any Hermitian operator Â.

2.2.2 Pauli Operators

There are many other possibilities to define basis operators, besides the transition
operators. For ntot = 2 a convenient set is given by the so-called Pauli operators
σ̂i (i = 0, . . . , 3). The new basis operators can be expressed in terms of transition
operators

σ̂1 = P̂12 + P̂21 , (2.8)

σ̂2 = i(P̂12 − P̂21) , (2.9)

σ̂3 = −P̂11 + P̂22 , (2.10)

σ̂0 = 1̂ . (2.11)

These operators are Hermitian and – except for σ̂0 – traceless. The Pauli operators
satisfy several important relations: (σ̂i )

2 = 1̂ and [σ̂1, σ̂2] = 2iσ̂3 and their cyclic
extensions. Since the Pauli operators form a complete orthonormal operator basis,
it is possible to expand any operator in terms of these basis operators. Furthermore
we introduce raising and lowering operators, in accordance with

σ̂+ = 1/2
(
σ̂1 + iσ̂2

)
, σ̂− = 1/2

(
σ̂1 − iσ̂2

)
. (2.12)

Also for higher dimensional cases, ntot ≥ 2, one could use as a basis the Hermi-
tian generators of the SU(ntot) group.

2.2.3 State Representation

The most general way to define the state of a quantum mechanical system is by its
density matrix, ρi j , which specifies the representation of the density operator,

ρ̂ =
∑
i, j

ρi j P̂i j (2.13)

subject to the condition
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Tr {ρ̂} =
∑

i

ρi i = 1 . (2.14)

The expectation value for some observable Â in state ρ̂ is now given by

〈A〉 = Tr
{

Âρ̂
} =

∑
i, j

Ai jρi j . (2.15)

The density matrix ρi j = 〈i |ρ̂| j〉 is a positive definite and Hermitian matrix. The
number of independent real numbers needed to specify ρ̂ is thus d = n2

tot − 1. For
the density operator of an arbitrary pure state |ψ〉 we have ρ̂ = |ψ〉〈ψ |. In the
eigenrepresentation one finds, with Wi = ρi i ,

ρ̂ =
∑

i

Wi P̂ii , (2.16)

which may be interpreted as a “mixture” of pure states P̂ii = |i〉〈i | with the statis-
tical weight Wi . From this object the probability W (|ψ〉) to find the system in an
arbitrary pure state, expanded in the basis |i〉

|ψ〉 =
∑

i

ψi |i〉 , (2.17)

can be calculated as

W (|ψ〉) = 〈ψ |ρ̂|ψ〉 =
∑

i

|ψi |2Wi . (2.18)

To measure the distance of two arbitrary, not necessarily, pure states given by ρ̂

and ρ̂ ′ we define a “distance measure”

D2
ρ̂ρ̂ ′ = Tr

{
(ρ̂ − ρ̂ ′)2

}
. (2.19)

This commutative measure (sometimes called Bures metric) has a number of con-
venient properties: D2

ρ̂ρ̂ ′ ≥ 0 with the equal sign holding if and only if ρ̂ = ρ̂ ′; the
triangle inequality holds as expected for a conventional distance measure; for pure
states

D2
|ψ〉|ψ ′〉 = 2

(
1 − |〈ψ |ψ ′〉|2

)
≤ 2 (2.20)

and D2 is invariant under unitary transformations. A second measure of distance is
the fidelity defined by [14]

Fρ̂ρ̂ ′ = Tr

{(√
ρ̂ ρ̂ ′√ρ̂

)1/2
}

. (2.21)
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For pure states F is just the modulus of the overlap: F|ψ〉|ψ ′〉 = |〈ψ |ψ ′〉|.

2.2.4 Purity and von Neumann Entropy

For a pure state in eigenrepresentation all matrix elements in (2.13) of the density
matrix are zero except ρi i = 1, say, i.e., the density operator ρ̂ = P̂ii is a projection
operator. Obviously in this case ρ̂2 = ρ̂, due to the properties of the projection
operator, so that the so-called purity becomes

P = Tr
{
ρ̂2

} = 1 . (2.22)

In general, we have

P(ρ̂) =
∑
i, j

∑
i ′, j ′

ρi j ρi ′ j ′ Tr
{

P̂i j P̂†
i ′ j ′

}
=

∑
i, j

|ρi j |2 >
1

ntot
. (2.23)

Because of the Cauchy–Schwarz relation

|ρi j |2 ≤ ρi i ρ j j , (2.24)

we conclude that P ≤ 1. The equality sign holds for pure states only. P can be
calculated for any density matrix without prior diagonalization. In the diagonal rep-
resentation (cf. (2.16)) the purity is simply the sum of the squares of the probabilities
Wi to find the system in a respective eigenstate,

P({Wi }) = Tr
{
ρ̂2

} =
∑

i

W 2
i . (2.25)

Note that the purity itself is invariant with respect to unitary transformations. Its
value does not depend on the representation chosen.

Furthermore, a very important quantity is another measure called the von Neu-
mann entropy [14]. Also this measure is defined for any state ρ̂ as

S(ρ̂) = −kBTr {ρ̂ ln ρ̂} ≥ 0 , (2.26)

where kB denotes a proportional constant, the Boltzmann constant. (At this point
the inclusion of kB is arbitrary and not yet meant to anticipate any connection to
thermodynamics.) For a pure state the minimum entropy S = 0 is reached. The
maximum entropy obtains for

ρi j = 1

ntot
δi j , i, j = 1, 2, . . . , ntot , (2.27)

i.e., for a density matrix proportional to the normalized unit matrix, with the entropy
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Smax = kB ln ntot . (2.28)

In the same limit the purity P is minimal,

Pmin = 1

ntot
. (2.29)

The maximum entropy (or minimum purity) is thus found for the broadest possible
probability distribution, the equipartition over all pure states (remember (2.27)).
Therefore S and P are both measures for the “broadness” of the distribution.

The purity can be expressed as a rather simple function of the full state, the
evaluation of which does not require the diagonalization of a matrix, as opposed to
the calculation of the von Neumann entropy. We will thus mainly consider P rather
than S.

In general, though, these two measures do not uniquely map onto each other.
Nevertheless in the limits of maximum S (minimum P) and maximum P (minimum
S) they do. The formal approximation ln ρ̂ ≈ ρ̂ − 1̂ leads to the “linearized” entropy

Slin = kB(1 − P) ≥ 0 . (2.30)

Since, as will be shown in Sect. 2.4, S is a constant of motion, the question for the
possible origin of S > 0 arises. One interpretation is essentially classical and traces
a finite S back to subjective ignorance. In the eigenrepresentation of the density
operator (see (2.16)) the density operator can be seen as a “mixture” of pure states
P̂ii = |i〉〈i | and the entropy then reads

S = −kB

∑
i

Wi ln Wi . (2.31)

Alternatively, a nonpure state may result from the system under consideration being
entangled with another system, while the total state is pure. In this case S indicates
a principal uncertainty. It is always possible to find such an embedding, as will be
discussed in the next section.

2.2.5 Bipartite Systems

Systems typically consist of subsystems. In the case of a bipartite system, the total
Hilbert space can be decomposed into a product space

H = H (1) ⊗ H (2) , (2.32)

with dimension ntot = n(1) ·n(2). A complete set of orthonormal vectors is then given
by the product states (⊗ means tensor product of the vectors involved)
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|i j〉 = |i〉 ⊗ | j〉 , (2.33)

with i = 1, 2, . . . , n(1) numbering the states in H (1) and j = 1, 2, . . . , n(2) in H (2).
The states fulfill the orthonormality relation

〈i j |i ′ j ′〉 = δi i ′ δ j j ′ . (2.34)

Based on this we can define the transition operators

P̂i j |i ′ j ′ = |i j〉〈i ′ j ′| = P̂ (1)
i i ′ ⊗ P̂ (2)

j j ′ , (2.35)

where P̂ (μ)
i i ′ is a transition operator in the subspace of the subsystem μ = 1, 2. These,

again, form a complete orthogonal set such that any operator Â can be expanded in
the form

Â =
∑
i, j

∑
i ′, j ′

Ai j |i ′ j ′ P̂i j |i ′ j ′ . (2.36)

For a pure state

|ψ〉 =
∑
i, j

ψi j |i〉 ⊗ | j〉 (2.37)

the density operator ρ̂ = |ψ〉〈ψ | has the matrix representation

ρi j |i ′ j ′ = ψi j ψ∗
i ′ j ′ . (2.38)

If we are interested in the state of one of the subsystems alone we have to trace
over the other subsystem. The reduced density operator of the system of interest is
now given by

ρ̂(1) = Tr2 {ρ̂} =
∑
i,i ′

∑
j

〈i j |ρ̂|i ′ j〉 |i〉〈i ′|

=
∑
i,i ′

ρi i ′ P̂ (1)
i i ′ , (2.39)

with ρi i ′ = ∑
j ρi j |i ′ j . Here Tr2 {. . . } means trace operation within Hilbert space

H (2). The result for subsystem 2 is obtained by exchanging the indices of the two
subsystems.

The expectation value for any local operator Â(1) ⊗ 1̂(2) can be calculated from

〈 Â(1)〉 = Tr1
{

Â(1)ρ̂(1)
}

. (2.40)

The corresponding purity, say, for the reduced state of the first subsystem, is
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P
(
ρ̂(1)

) =
∑
i,i ′

|ρi i ′ |2 =
∑
i,i ′

∑
j, j ′

ρi j |i ′ j ρi ′ j ′ |i j ′ . (2.41)

Furthermore, the reduced von Neumann entropies are given by

S
(
ρ̂(μ)

) = −kBTrμ
{
ρ̂(μ) ln ρ̂(μ)

}
, μ = 1, 2 . (2.42)

One easily convinces oneself that for

ρ̂ = ρ̂(1) ⊗ ρ̂(2) (2.43)

the total entropy is additive,

S = S
(
ρ̂(1)

) + S
(
ρ̂(2)

)
. (2.44)

In general, the theorem by Araki and Lieb [15] tells us that

|S(ρ̂(1)
) − S

(
ρ̂(2)

)| ≤ S ≤ S
(
ρ̂(1)

) + S
(
ρ̂(2)

)
. (2.45)

This theorem implies that if the total system is in a pure state (S = 0) then
S(ρ̂(1)) = S(ρ̂(2)), no matter how the system is partitioned. Under the same condition
P(ρ̂(1)) = P(ρ̂(2)). Then if S(ρ̂(1)) = S(ρ̂(2)) > 0, it follows that (2.44) does not
apply and the total (pure) state cannot be written in a product form. This is inter-
preted to result from “entanglement,” for which the local entropies S(ρ̂(1)) = S(ρ̂(2))
thus constitute an appropriate measure.

Such pure entangled states have been of central interest now for almost 70 years.
They can have properties that seem to contradict intuition. If a local measurement on
one subsystem is made, i.e., a projection of only one subsystem state is performed,
the local state of the other subsystem can be severely affected, which has raised
the question of whether quantum mechanics could be valid at all [16]. Neverthe-
less, these states can theoretically be shown to result from product states, if the
subsystems are allowed to interact for a while. On a small scale such a buildup has
been demonstrated experimentally; it is a widespread belief that entanglement as
a fundamental quantum mechanical property should show up mainly between very
small objects.

2.2.6 Multipartite Systems

Alternatively, one may consider a network of N subsystems of dimension n each.
Then ntot = nN . As a consequence of the direct product structure, the number of
parameters required to specify a density operator then grows exponentially with N

d = n2N − 1 . (2.46)
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For the classical system of N point particles we would need 6N real parameters, i.e.,
we would just have to specify position and momentum of each individual particle.
This so-called phase space is the direct sum of the individual particle spaces. The
analog in the quantum case would be to specify the local states of the N subsystems,
for which we would need (n2 − 1)N parameters. (This was the dimension of the
direct sum of subsystem Liouville spaces.) Defining

γ = d

(n2 − 1)N
, (2.47)

we see that for n = 2, N = 3, γ = 7, but for N = 10, γ ≈ 30 000. The tremendous
information needed over the local parameters is due to the fact that correlations
(entanglement) dominate, in general. For product states γ = 1.

The blowup of γ is a typical quantum property, closer to the heart of quantum
mechanics than the famous Heisenberg uncertainty relation. Both are due to the
non-commutativity of the underlying operators, though.

The number of parameters needed to specify a Hamilton model typically grows
only polynomially with N . This is because direct interactions are usually restricted
to finite clusters, e.g., up to pairs.

2.3 Dynamics

So far, we have considered some properties of Hilbert spaces, the basis operators and
appropriate states. We turn now to some dynamical aspects of quantum systems.

The unitary dynamics of a closed system generated by a Hamilton operator Ĥ is
given by the Schrödinger equation

i�
∂

∂t
|ψ(t)〉 = Ĥ (t)|ψ(t)〉 (2.48)

for the time-dependent pure state |ψ(t)〉. This is the fundamental equation specify-
ing the so-called Schrödinger picture: here the state vectors |ψ(t)〉 carry all dynam-
ics, while the basic operators are time independent. But note that the Hamiltonian
could include explicitly time-dependent potentials. These would render the system
non-autonomous, though.

From the Schrödinger equation one can easily derive the evolution equation
directly for the density operator. This is the Liouville–von Neumann equation

i�
∂ρ̂

∂t
= [Ĥ , ρ̂] , (2.49)

with [ Â, B̂] = Â B̂ − B̂ Â defining the commutator. This equation can be written in
the form
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∂ρ̂

∂t
= L̂ρ̂ , (2.50)

where L̂ is a so-called superoperator acting (here) on the operator ρ̂ to produce the
new operator

L̂ρ̂ = − i

�
[Ĥ , ρ̂] . (2.51)

Modified superoperators control the dynamics of open quantum systems, which we
will consider in detail in Sect. 4.8.

The Liouville–von Neumann equation can formally be solved by

ρ̂(t) = Û (t) ρ̂(0) Û †(t) , (2.52)

where the unitary time evolution operator, Û †Û = ÛÛ † = 1̂, also obeys the
Schrödinger equation,

i�
∂

∂t
Û (t) = Ĥ (t) Û (t) . (2.53)

For ∂ Ĥ/∂t = 0, i.e., no explicit time-dependent Hamiltonian, it has the formal
solution

Û (t) = e−iĤ t/� . (2.54)

When represented with respect to a specific set of basis operators, the Liouville–
von Neumann equation is equivalent to

i�
∂

∂t
ρi j (t) = Tr

{
[Ĥ , ρ̂(t)] P̂†

i j

}
. (2.55)

This equation determines the evolution of the matrix elements of the density opera-
tor. The solution ρi j (t), subject to the condition

∑
i ρi i = 1, can thus be visualized as

a deterministic quantum trajectory in Liouville space, controlled by the Hamiltonian
and by the initial state ρ̂(0).

In the Heisenberg picture, the dynamics is carried by time-dependent observables

ÂH(t) = Û †(t) Â Û (t) , (2.56)

while the states are constant, ρ̂H(t) = ρ̂(0). If ∂ Â/∂t = 0 in the Schrödinger picture,
the corresponding evolution equation for the now time-dependent operators reads

i�
d

dt
ÂH = −[Ĥ , ÂH] . (2.57)
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In either picture the time dependence of the expectation value of an operator 〈 Â〉 =
Tr

{
Â ρ̂

} = Tr
{

ÂH ρ̂(0)
}

is given by

i�
∂

∂t
〈 Â〉 = Tr

{
[Ĥ , ρ̂] Â

} = −Tr
{
[Ĥ , ÂH] ρ̂(0)

}

= −〈[Ĥ , ÂH]〉 , (2.58)

which is known as the “Ehrenfest theorem.” Since this evolution equation is similar
to the classical equation of motion based on the Poisson bracket, this theorem can be
interpreted to state that “the classical equations of motion are valid for expectation
values in quantum mechanics.”

2.4 Invariants

According to the Heisenberg equation of motion (2.57), conserved quantities are
those which commute with the system Hamiltonian Ĥ . In eigenrepresentation Ĥ
can be written as

Ĥ =
ntot∑
i=1

Ei P̂ii . (2.59)

As a consequence, the projectors commute with the Hamiltonian itself,

[P̂j j , Ĥ ] = 0 , j = 1, . . . , ntot . (2.60)

Since commutators are invariant under unitary transformations, the above relation
thus holds in the Schrödinger as well as in the Heisenberg pictures. For the change
of the energy distribution we find

i�
∂

∂t
Wj = i

∂

∂t
Tr

{
P̂j j ρ̂

} = −Tr
{

[Ĥ , P̂ (H)
j j ] ρ̂(0)

}
= 0 , (2.61)

i.e., the energy distribution, the probability of finding the system in state j , is a
constant of motion.

Furthermore, defining the expectation value of an arbitrary function of the density
operator ρ̂

〈 f (ρ̂)〉 = Tr {ρ̂ f (ρ̂)} , (2.62)

one infers that
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i�
∂

∂t
〈 f (ρ̂)〉 = i� Tr

{
∂

∂t
ρ̂ f (ρ̂)

}
+ i� Tr

{
ρ̂

∂

∂t
f (ρ̂)

}

= Tr
{
[Ĥ , ρ̂] f (ρ̂)

} + Tr
{
ρ̂[Ĥ , f (ρ̂)]

}
. (2.63)

Here we have made use of the Liouville equation (2.49) and its variant

i�
∂

∂t
f (ρ̂) = [Ĥ , f (ρ̂)] . (2.64)

Observing the invariance of the first trace term in (2.63) under cyclic permutations,
we see that the right-hand side cancels,

d

dt
〈 f (ρ̂)〉 = 0 . (2.65)

Taking now f (ρ̂) = ρ̂, the term 〈 f (ρ̂)〉 = Tr
{
ρ̂2

}
is just the purity, so that

d

dt
P = 0 . (2.66)

For f (ρ̂) = ln ρ̂ one concludes that the von Neumann entropy is invariant, too. In
fact, any moment Tr

{
(ρ̂)k

}
is a constant of motion in closed quantum systems. But

note that the local reduced von Neumann entropy of a part of the system defined in
(2.42) is not necessarily conserved under a unitary time evolution of the full system
(see Sect. 6.1).

For later reference we finally investigate a bipartite system with the total Hamil-
tonian Ĥ . Here we may encounter a situation for which

[ Â(1), Ĥ ] = 0 , [B̂(2), Ĥ ] = 0 , (2.67)

where the operator

Â(1) =
∑

i

Ai P̂ (1)
i i (2.68)

acts only on subsystem 1, and

B̂(2) =
∑

j

B j P̂ (2)
j j (2.69)

acts only on subsystem 2. As a consequence,

[
(

Â(1))k
, Ĥ ] =

∑
i

Ak
i [P̂ (1)

i i , Ĥ ] = 0 . (2.70)

As this has to hold for any k, we conclude that
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[P̂ (1)
i i , Ĥ ] = 0 , (2.71)

and correspondingly,

[P̂ (2)
j j , Ĥ ] = 0 . (2.72)

According to these considerations the expectation value

W (12)
i j = Tr

{
P̂ii (1) P̂j j (2) ρ̂

}
(2.73)

is thus a conserved quantity, too. This expectation value is the joint probability for
finding subsystem 1 in state i and subsystem 2 in state j .

2.5 Time-Dependent Perturbation Theory

Just as in classical mechanics or any other theoretical framework, there are very few
examples that allow us to achieve an exact analytical solution. In quantum mechan-
ics even numerical solutions are seriously constrained by exponential explosion of
state parameters (cf. Sect. 2.2.6). Many, quite powerful, approximation schemes
have been developed. For later reference we summarize here the basics of standard
perturbation theory.

To consider time-dependent phenomena it is often very helpful – if not unavoid-
able – to use a perturbation theory instead of a full solution of the time-dependent
problem. To outline such a theory, we use in addition to the Schrödinger and the
Heisenberg pictures the interaction or Dirac picture.

2.5.1 Interaction Picture

In the interaction picture, both observables and states are time dependent. We con-
sider the Hamilton operator

Ĥ = Ĥ0 + V̂ (t) , (2.74)

where Ĥ0 represents the unperturbed Hamiltonian and V̂ (t) the time-dependent per-
turbation. According to the unitary transformation

Û0(t, t0) = exp

(
− i

�
Ĥ0(t − t0)

)
, (2.75)

where t0 is the time at which the perturbation is switched on, one can transform the
states as well as the operators of the Schrödinger picture into the interaction picture
(index I)



20 2 Basics of Quantum Mechanics

|ψ(t)〉 = Û0(t, t0) |ψI(t)〉 , (2.76)

ÂI = Û †
0 (t, t0) Â Û0 (t, t0) . (2.77)

Based on these transformations, the Schrödinger equation reads

i�
( ∂

∂t
Û0

)
|ψI(t)〉 + i�Û0

∂

∂t
|ψI(t)〉 = (Ĥ0 + V̂ )Û0|ψI(t)〉 . (2.78)

Observing that

i�
∂

∂t
Û0 = Ĥ0 Û0 (2.79)

and

Û0Û †
0 = 1̂ , (2.80)

the above equation reduces to an effective Schrödinger equation for |ψI(t)〉

i�
∂

∂t
|ψI(t)〉 = V̂I(t) |ψI(t)〉 , (2.81)

identifying V̂I(t) = Û †
0 V̂ (t)Û0 . This equation has the formal solution

|ψI(t)〉 = ÛI(t, t0) |ψI(t0)〉, (2.82)

with the evolution equation

i�
∂

∂t
ÛI(t, t0) = V̂I(t) ÛI(t, t0) . (2.83)

The corresponding dynamics for observables in the interaction picture (remember
(2.77)) is then controlled by

d ÂI

dt
= 1

i�
[ ÂI(t), Ĥ0] + Û †

0

∂ Â

∂t
Û0 . (2.84)

2.5.2 Series Expansion

The formal solution (2.82) of the effective Schrödinger equation (2.81) may be writ-
ten as

ÛI (t, t0) = 1̂ − i

�

∫ t

t0

dt1V̂I(t1) ÛI(t1, t0) . (2.85)
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This integral equation can be solved for ÛI(t, t0) by iteration,

ÛI(t, t0) = 1̂ + i

�

∫ t

t0

dt1 V̂I(t1) +
(

i

�

)2 ∫ t

t0

dt1

∫ t1

t0

dt2 V̂I(t1) V̂I(t2) + · · ·

=
∞∑

n=0

(
i

�

)n ∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tn−1

t0

dtn V̂I(t1) · · · V̂I(tn) , (2.86)

which is called the Dyson series expansion. In first order the transition probability
due to V̂I(t) is given by

Wi j (t) =
∣∣∣∣ δi j + 1

i�

∫ t

t0

dt1 〈 j | V̂I(t1) |i〉
∣∣∣∣
2

. (2.87)

For i �= j and going back to the Schrödinger picture, we find

Wi j (t) = 1

�2

∣∣∣∣
∫ t

t0

dt1 exp

(
i(E j − Ei )t1

�

)
〈 j | V̂ (t1) |i〉

∣∣∣∣
2

. (2.88)

Let the time-dependent perturbation be

V̂ (t) =
{

0
V̂

for
t ≤ 0
t > 0

(2.89)

and

E j − Ei

�
= ω j i . (2.90)

Then we find for the transition probability

Wi j (t) = 1

�2

∣∣∣∣
eiω j i t − 1

ω j i
〈 j |V̂ |i〉

∣∣∣∣
2

(2.91)

= 1

�2

∣∣∣∣
sin(ω j i t/2)

ω j i/2

∣∣∣∣
2

|〈 j |V̂ |i〉|2 , (2.92)

which gives Fermi’s golden rule for large times

Wi j (t) = t
2π

�
δ(E j − Ei )|〈 j |V̂ |i〉|2 , (2.93)

i.e., a constant transition rate.
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