Contents

Introduction ... 1

References ... 7

Part One. The Nonlinear Schrödinger Equation (NS Model) 9

Chapter I. Zero Curvature Representation 11
§ 1. Formulation of the NS Model ... 11
§ 2. Zero Curvature Condition ... 20
§ 3. Properties of the Monodromy Matrix in the Quasi-Periodic Case .. 26
§ 4. Local Integrals of the Motion ... 33
§ 5. The Monodromy Matrix in the Rapidly Decreasing Case 39
§ 6. Analytic Properties of Transition Coefficients 46
§ 7. The Dynamics of Transition Coefficients 51
§ 8. The Case of Finite Density. Jost Solutions 55
§ 9. The Case of Finite Density. Transition Coefficients 62
§ 10. The Case of Finite Density. Time Dynamics and Integrals of the Motion ... 72
§ 11. Notes and References .. 78
References ... 80

Chapter II. The Riemann Problem .. 81
§ 1. The Rapidly Decreasing Case. Formulation of the Riemann Problem .. 81
§ 2. The Rapidly Decreasing Case. Analysis of the Riemann Problem .. 89
§ 3. Application of the Inverse Scattering Problem to the NS Model .. 108
§ 4. Relationship Between the Riemann Problem Method and the Gelfand-Levitan-Marchenko Integral Equations Formulation 114
§ 5. The Rapidly Decreasing Case. Soliton Solutions 126
§ 8. Soliton Solutions in the Case of Finite Density 165
Hamiltonian Methods in the Theory of Solitons
Faddeev, L.D.; Takhtajan, L.
2007, IX, 592 p., Softcover
ISBN: 978-3-540-69843-2