Contents

Introduction .. 1
References ... 7

Part One. The Nonlinear Schrödinger Equation (NS Model) 9

Chapter I. Zero Curvature Representation 11
 § 1. Formulation of the NS Model 11
 § 2. Zero Curvature Condition 20
 § 3. Properties of the Monodromy Matrix in the Quasi-Periodic Case ... 26
 § 4. Local Integrals of the Motion 33
 § 5. The Monodromy Matrix in the Rapidly Decreasing Case 39
 § 6. Analytic Properties of Transition Coefficients 46
 § 7. The Dynamics of Transition Coefficients 51
 § 8. The Case of Finite Density. Jost Solutions 55
 § 9. The Case of Finite Density. Transition Coefficients 62
 § 10. The Case of Finite Density. Time Dynamics and Integrals of the Motion .. 72
 § 11. Notes and References .. 78
References .. 80

Chapter II. The Riemann Problem 81
 § 1. The Rapidly Decreasing Case. Formulation of the Riemann Problem ... 81
 § 2. The Rapidly Decreasing Case. Analysis of the Riemann Problem ... 89
 § 3. Application of the Inverse Scattering Problem to the NS Model ... 108
 § 4. Relationship Between the Riemann Problem Method and the Gelfand-Levitan-Marchenko Integral Equations Formulation 114
 § 5. The Rapidly Decreasing Case. Soliton Solutions 126
 § 7. Solution of the Inverse Problem in the Case of Finite Density. The Gelfand-Levitan-Marchenko Formulation 146
 § 8. Soliton Solutions in the Case of Finite Density 165
§ 9. Notes and References ... 177
References .. 182

Chapter III. The Hamiltonian Formulation 186
§ 1. Fundamental Poisson Brackets and the r-Matrix 186
§ 2. Poisson Commutativity of the Motion Integrals in the Quasi-
Periodic Case ... 194
§ 3. Derivation of the Zero Curvature Representation from the Fun-
damental Poisson Brackets ... 199
§ 4. Integrals of the Motion in the Rapidly Decreasing Case and in
the Case of Finite Density ... 205
§ 5. The A-Operator and a Hierarchy of Poisson Structures ... 210
§ 6. Poisson Brackets of Transition Coefficients in the Rapidly
Decreasing Case ... 222
§ 7. Action-Angle Variables in the Rapidly Decreasing Case ... 229
§ 8. Soliton Dynamics from the Hamiltonian Point of View 241
§ 9. Complete Integrability in the Case of Finite Density 249
§ 10. Notes and References .. 267
References .. 274

Part Two. General Theory of Integrable Evolution Equations 279
Chapter I. Basic Examples and Their General Properties 281
§ 1. Formulation of the Basic Continuous Models 281
§ 2. Examples of Lattice Models .. 292
§ 3. Zero Curvature Representation as a Method for Constructing
Integrable Equations ... 305
§ 4. Gauge Equivalence of the NS Model ($\varepsilon = -1$) and the HM
Model ... 315
§ 5. Hamiltonian Formulation of the Chiral Field Equations and
Related Models ... 321
§ 6. The Riemann Problem as a Method for Constructing Solutions
of Integrable Equations .. 333
§ 7. A Scheme for Constructing the General Solution of the Zero
Curvature Equation. Concluding Remarks on Integrable Equa-
tions .. 339
§ 8. Notes and References .. 345
References .. 350

Chapter II. Fundamental Continuous Models 356
§ 1. The Auxiliary Linear Problem for the HM Model 356
§ 2. The Inverse Problem for the HM Model 370
§ 3. Hamiltonian Formulation of the HM Model 384
§ 4. The Auxiliary Linear Problem for the SG Model 393
§ 5. The Inverse Problem for the SG Model 407
§ 6. Hamiltonian Formulation of the SG Model 431
Hamiltonian Methods in the Theory of Solitons
Faddeev, L.D.; Takhtajan, L.
2007, IX, 592 p., Softcover
ISBN: 978-3-540-69843-2