Contents

Introduction ... 1

Part I Description and Properties of Multipliers

1 Trace Inequalities for Functions in Sobolev Spaces 7
 1.1 Trace Inequalities for Functions in w_1^m and W_1^m 7
 1.1.1 The Case $m = 1$.. 7
 1.1.2 The Case $m \geq 1$... 12
 1.2 Trace Inequalities for Functions in w_p^m and W_p^m, $p > 1$ 14
 1.2.1 Preliminaries .. 14
 1.2.2 The (p,m)-Capacity 16
 1.2.3 Estimate for the Integral of Capacity of a Set Bounded
 by a Level Surface ... 19
 1.2.4 Estimates for Constants in Trace Inequalities 22
 1.2.5 Other Criteria for the Trace Inequality (1.2.29)
 with $p > 1$.. 25
 1.2.6 The Fefferman and Phong Sufficient Condition 28
 1.3 Estimate for the L_q-Norm with respect to an Arbitrary
 Measure .. 29
 1.3.1 The case $1 \leq p < q$ 30
 1.3.2 The case $q < p \leq n/m$ 30

2 Multipliers in Pairs of Sobolev Spaces 33
 2.1 Introduction ... 33
 2.2 Characterization of the Space $M(W_1^m \to W_1^l)$ 35
 2.3 Characterization of the Space $M(W_p^m \to W_p^l)$ for $p > 1$ 38
 2.3.1 Another Characterization of the Space $M(W_p^m \to W_p^l)$
 for $0 < l < m$, $pm \leq n$, $p > 1$ 43
 2.3.2 Characterization of the Space $M(W_p^m \to W_p^l)$
 for $pm > n$, $p > 1$... 47
2.3.3 One-Sided Estimates for Norms of Multipliers in the Case $pm \leq n$.. 48
2.3.4 Examples of Multipliers .. 49
2.4 The Space $M(W^m_p(\mathbb{R}_+^n) \rightarrow W^q_l(\mathbb{R}_+^n))$.. 50
2.4.1 Extension from a Half-Space .. 50
2.4.2 The Case $p > 1$.. 51
2.4.3 The Case $p = 1$.. 53
2.5 The Space $M(W^m_p \rightarrow W^q_l)$.. 54
2.7 Certain Properties of Multipliers .. 58
2.8 The Space $M(w^m_p \rightarrow w^l_p)$.. 60
2.9 Multipliers in Spaces of Functions with Bounded Variation 63
2.9.1 The Spaces M_{bv} and MBV .. 66

3 Multipliers in Pairs of Potential Spaces .. 69
3.1 Trace Inequality for Bessel and Riesz Potential Spaces 69
3.1.1 Properties of Bessel Potential Spaces .. 70
3.1.2 Properties of the (p, m)-Capacity .. 71
3.1.3 Main Result .. 73
3.2 Description of $M(H^m_p \rightarrow H^l_p)$.. 75
3.2.1 Auxiliary Assertions .. 75
3.2.2 Imbedding of $M(H^m_p \rightarrow H^l_p)$ into $M(H^{m-1}_p \rightarrow L_p)$.. 76
3.2.3 Estimates for Derivatives of a Multiplier .. 78
3.2.4 Multiplicative Inequality for the Strichartz Function 79
3.2.5 Auxiliary Properties of the Bessel Kernel G_l .. 80
3.2.6 Upper Bound for the Norm of a Multiplier .. 81
3.2.7 Lower Bound for the Norm of a Multiplier .. 85
3.2.8 Description of the Space $M(H^m_p \rightarrow H^l_p)$.. 86
3.2.9 Equivalent Norm in $M(H^m_p \rightarrow H^l_p)$ Involving the Norm in $L^{mp/(m-1)}$.. 87
3.2.10 Characterization of $M(H^m_p \rightarrow H^l_p)$, $m > l$, Involving the Norm in $L_{1, \text{unit}}$.. 89
3.2.11 The Space $M(H^m_p \rightarrow H^l_p)$ for $mp > n$.. 95
3.3 One-Sided Estimates for the Norm in $M(H^m_p \rightarrow H^l_p)$ 95
3.3.1 Lower Estimate for the Norm in $M(H^m_p \rightarrow H^l_p)$ Involving Morrey Type Norms .. 96
3.3.2 Upper Estimate for the Norm in $M(H^m_p \rightarrow H^l_p)$ Involving Marcinkiewicz Type Norms .. 96
3.3.3 Upper Estimates for the Norm in $M(H^m_p \rightarrow H^l_p)$ Involving Norms in $H^{l/m}_{n/l}$.. 98
3.4 Upper Estimates for the Norm in $M(H^m_p \rightarrow H^l_p)$ by Norms in Besov Spaces .. 99
3.4.1 Auxiliary Assertions .. 99
3.4.2 Properties of the Space $B^p_{q, \infty}$.. 103
3.4.3 Estimates for the Norm in $M(H^m_p \to H^l_p)$
by the Norm in $B^\mu_{q,\infty}$.. 108
3.4.4 Estimate for the Norm of a Multiplier in $MH^l_p(\mathbb{R}^d)$
by the q-Variation ... 110
3.5 Miscellaneous Properties of Multipliers in $M(H^m_p \to H^l_p)$ 111
3.6 Spectrum of Multipliers in H^l_p and H^{-l}_p 115
3.6.1 Preliminary Information .. 115
3.6.2 Facts from Nonlinear Potential Theory 117
3.6.3 Main Theorem .. 118
3.6.4 Proof of Theorem 3.6.1 .. 120
3.7 The Space $M(h^m_p \to h^l_p)$ 122
3.8 Positive Homogeneous Multipliers 125
3.8.1 The Space $M(H^m_p(\partial B_1) \to H^l_p(\partial B_1))$ 125
3.8.2 Other Normalizations of the Spaces h^m_p and H^m_p 127
3.8.3 Positive Homogeneous Elements of the Spaces
$M(h^m_p \to h^l_p)$ and $M(H^m_p \to H^l_p)$ 130

4 The Space $M(B^m_p \to B^l_p)$ with $p > 1$ 133
4.1 Introduction .. 133
4.2 Properties of Besov Spaces ... 134
4.2.1 Survey of Known Results 134
4.2.2 Properties of the Operators $\mathcal{D}_{p,l}$ and $D_{p,l}$ 136
4.2.3 Pointwise Estimate for Bessel Potentials 138
4.3 Proof of Theorem 4.1.1 ... 141
4.3.1 Estimate for the Product of First Differences 141
4.3.2 Trace Inequality for B^k_p, $p > 1$ 143
4.3.3 Auxiliary Assertions Concerning $M(B^m_p \to B^l_p)$ 145
4.3.4 Lower Estimates for the Norm in $M(B^m_p \to B^l_p)$ 146
4.3.5 Proof of Necessity in Theorem 4.1.1 149
4.3.6 Proof of Sufficiency in Theorem 4.1.1 155
4.3.7 The Case $mp > n$.. 164
4.3.8 Lower and Upper Estimates for the Norm in $M(B^m_p \to B^l_p)$.. 165
4.4 Sufficient Conditions for Inclusion into $M(W^m_p \to W^l_p)$
with Noninteger m and l .. 166
4.4.1 Conditions Involving the Space B^m_q 166
4.4.2 Conditions Involving the Fourier Transform 168
4.4.3 Conditions Involving the Space B^m_q 170
4.5 Conditions Involving the Space $H^l_{n/m}$ 173
4.6 Composition Operator on $M(W^m_p \to W^l_p)$ 174
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>The Space $M(B^m_1 \to B^l_1)$</td>
<td>179</td>
</tr>
<tr>
<td>5.1</td>
<td>Trace Inequality for Functions in $B^l_1(\mathbb{R}^n)$</td>
<td>179</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Auxiliary Facts</td>
<td>180</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Main Result</td>
<td>183</td>
</tr>
<tr>
<td>5.2</td>
<td>Properties of Functions in the Space $B^l_1(\mathbb{R}^n)$</td>
<td>185</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Trace and Imbedding Properties</td>
<td>185</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Auxiliary Estimates for the Poisson Operator</td>
<td>189</td>
</tr>
<tr>
<td>5.3</td>
<td>Descriptions of $M(B^m_1 \to B^l_1)$ with Integer l</td>
<td>193</td>
</tr>
<tr>
<td>5.3.1</td>
<td>A Norm in $M(B^m_1 \to B^l_1)$</td>
<td>194</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Description of $M(B^m_1 \to B^l_1)$ Involving $\mathcal{D}_{1,l}$</td>
<td>199</td>
</tr>
<tr>
<td>5.3.3</td>
<td>$M(B^m_1(\mathbb{R}^n) \to B^l_1(\mathbb{R}^n))$ as the Space of Traces</td>
<td>201</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Interpolation Inequality for Multipliers</td>
<td>202</td>
</tr>
<tr>
<td>5.4</td>
<td>Description of the Space $M(B^m_1 \to B^l_1)$ with Noninteger l</td>
<td>203</td>
</tr>
<tr>
<td>5.5</td>
<td>Further Results on Multipliers in Besov and Other Function Spaces</td>
<td>206</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Peetre’s Imbedding Theorem</td>
<td>206</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Related Results on Multipliers in Besov and Triebel-Lizorkin Spaces</td>
<td>208</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Multipliers in BMO</td>
<td>210</td>
</tr>
<tr>
<td>6</td>
<td>Maximal Algebras in Spaces of Multipliers</td>
<td>213</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>213</td>
</tr>
<tr>
<td>6.2</td>
<td>Pointwise Interpolation Inequalities for Derivatives</td>
<td>214</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Inequalities Involving Derivatives of Integer Order</td>
<td>214</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Inequalities Involving Derivatives of Fractional Order</td>
<td>215</td>
</tr>
<tr>
<td>6.3</td>
<td>Maximal Banach Algebra in $M(W^m_p \to W^l_p)$</td>
<td>220</td>
</tr>
<tr>
<td>6.3.1</td>
<td>The Case $p > 1$</td>
<td>220</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Maximal Banach Algebra in $M(W^m_1 \to W^l_1)$</td>
<td>224</td>
</tr>
<tr>
<td>6.4</td>
<td>Maximal Algebra in Spaces of Bessel Potentials</td>
<td>227</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Pointwise Inequalities Involving the Strichartz Function</td>
<td>227</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Banach Algebra $A^{m,d}_p$</td>
<td>231</td>
</tr>
<tr>
<td>6.5</td>
<td>Imbeddings of Maximal Algebras</td>
<td>233</td>
</tr>
<tr>
<td>7</td>
<td>Essential Norm and Compactness of Multipliers</td>
<td>241</td>
</tr>
<tr>
<td>7.1</td>
<td>Auxiliary Assertions</td>
<td>243</td>
</tr>
<tr>
<td>7.2</td>
<td>Two-Sided Estimates for the Essential Norm. The Case $m > l$</td>
<td>248</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Estimates Involving Cutoff Functions</td>
<td>248</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Estimate Involving Capacity (The Case $mp < n, p > 1$)</td>
<td>250</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Estimates Involving Capacity (The Case $mp = n, p > 1$)</td>
<td>257</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Proof of Theorem 7.0.3</td>
<td>261</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Sharpening of the Lower Bound for the Essential Norm in the Case $m > l, mp \leq n, p > 1$</td>
<td>262</td>
</tr>
</tbody>
</table>
Contents

7.2.6 Estimates of the Essential Norm for $mp > n$, $p > 1$
and for $p = 1$... 263
7.2.7 One-Sided Estimates for the Essential Norm 266
7.2.8 The Space of Compact Multipliers 267
7.3 Two-Sided Estimates for the Essential Norm
in the Case $m = l$.. 270
7.3.1 Estimate for the Maximum Modulus of a Multiplier
in W^l_p by its Essential Norm 270
7.3.2 Estimates for the Essential Norm Involving Cutoff
Functions (The Case $lp \leq n$, $p > 1$) 272
7.3.3 Estimates for the Essential Norm Involving Capacity
(The Case $lp \leq n$, $p > 1$) 277
7.3.4 Two-Sided Estimates for the Essential Norm
in the Cases $lp > n$, $p > 1$, and $p = 1$ 278
7.3.5 Essential Norm in $\mathcal{M}(W^l_p)$ 281

8 Traces and Extensions of Multipliers 285
8.1 Introduction .. 285
8.2 Multipliers in Pairs of Weighted Sobolev Spaces in \mathbb{R}^n...... 285
8.3 Characterization of $M(W^{l,p}_{p,\beta} \to W^{s,\alpha}_p)$ 288
8.4 Auxiliary Estimates for an Extension Operator 292
8.4.1 Pointwise Estimates for $\nabla T\gamma$ and $\nabla T\gamma$ 292
8.4.2 Weighted L^p-Estimates for $T\gamma$ and $\nabla T\gamma$ 294
8.5 Trace Theorem for the Space $M(W^{l,p}_{p,\beta} \to W^{s,\alpha}_p)$ 297
8.5.1 The Case $l < 1$ 298
8.5.2 The Case $l > 1$ 301
8.5.3 Proof of Theorem 8.5.1 for $l > 1$ 303
8.6 Traces of Multipliers on the Smooth Boundary of a Domain 304
8.7 $\mathcal{M}(W^l_p(\mathbb{R}^n))$ as the Space of Traces of Multipliers in the
Weighted Sobolev Space $W^{l,p}_{p,\beta}((\mathbb{R}^n)^{m})$ 305
8.7.1 Preliminaries ... 305
8.7.2 A Property of Extension Operator 306
8.7.3 Trace and Extension Theorem for Multipliers 308
8.7.4 Extension of Multipliers from \mathbb{R}^n to \mathbb{R}^{n+1}_{+} 311
8.7.5 Application to the First Boundary Value Problem
in a Half-Space .. 311
8.8 Traces of Functions in $\mathcal{M}(W^l_p(\mathbb{R}^{n+m}))$ on \mathbb{R}^n 312
8.8.1 Auxiliary Assertions 313
8.8.2 Trace and Extension Theorem 315
8.9 Multipliers in the Space of Bessel Potentials as Traces
of Multipliers ... 319
8.9.1 Bessel Potentials as Traces 319
8.9.2 An Auxiliary Estimate for the Extension Operator T 320
8.9.3 $\mathcal{M}(H^l_p)$ as a Space of Traces 322
9 Sobolev Multipliers in a Domain, Multiplier Mappings and Manifolds ... 325
 9.1 Multipliers in a Special Lipschitz Domain 326
 9.1.1 Special Lipschitz Domains 326
 9.1.2 Auxiliary Assertions 326
 9.1.3 Description of the Space of Multipliers 329
 9.2 Extension of Multipliers to the Complement of a Special
 Lipschitz Domain .. 332
 9.3 Multipliers in a Bounded Domain 336
 9.3.1 Domains with Boundary in the Class \(C^{0,1} \) 336
 9.3.2 Auxiliary Assertions 337
 9.3.3 Description of Spaces of Multipliers in a Bounded
 Domain with Boundary in the Class \(C^{0,1} \) 339
 9.3.4 Essential Norm and Compact Multipliers
 in a Bounded Lipschitz Domain 340
 9.3.5 The Space \(ML_{1,p}^{1}(\Omega) \) for an Arbitrary
 Bounded Domain ... 346
 9.4 Change of Variables in Norms of Sobolev Spaces 350
 9.4.1 \((p, l)\)-Diffeomorphisms 350
 9.4.2 More on \((p, l)\)-Diffeomorphisms 352
 9.4.3 A Particular \((p, l)\)-Diffeomorphism 353
 9.4.4 \((p, l)\)-Manifolds 356
 9.4.5 Mappings \(T_{m,l}^{p} \) of One Sobolev Space into
 Another .. 357
 9.5 Implicit Function Theorems 364
 9.6 The Space \(M(W^{m}_{p}(\Omega) \rightarrow W^{l}_{p}(\Omega)) \) 367
 9.6.1 Auxiliary Results 367
 9.6.2 Description of the Space \(M(W^{m}_{p}(\Omega) \rightarrow W^{l}_{p}(\Omega)) \) 369

Part II Applications of Multipliers to Differential and Integral
Operators

10 Differential Operators in Pairs of Sobolev Spaces 373
 10.1 The Norm of a Differential Operator: \(W^{h}_{p} \rightarrow W^{h-k}_{p} \) 373
 10.1.1 Coefficients of Operators Mapping \(W^{h}_{p} \) into
 \(W^{h-k}_{p} \) as Multipliers 374
 10.1.2 A Counterexample 378
 10.1.3 Operators with Coefficients Independent
 of Some Variables .. 379
 10.1.4 Differential Operators on a Domain 382
 10.2 Essential Norm of a Differential Operator 384
 10.3 Fredholm Property of the Schrödinger Operator 386
 10.4 Domination of Differential Operators in \(\mathbb{R}^{n} \) 387
11 Schrödinger Operator and $M(w^1_2 \to w^{-1}_2)$ 391
 11.1 Introduction ... 391
 11.2 Characterization of $M(w^1_2 \to w^{-1}_2)$ and the Schrödinger
 Operator on w^1_2 .. 393
 11.3 A Compactness Criterion ... 407
 11.4 Characterization of $M(W^{1/2}_2 \to W^{-1/2}_2)$ 411
 11.5 Characterization of the Space $M(w^1_2(\Omega) \to w^{-1}_2(\Omega))$ 416
 11.6 Second-Order Differential Operators Acting from w^1_2 to w^{-1}_2 .. 421

12 Relativistic Schrödinger Operator
 and $M(W^{1/2}_2 \to W^{-1/2}_2)$ 427
 12.1 Auxiliary Assertions .. 427
 12.1.1 Main Result .. 436
 12.2 Corollaries of the Form Boundedness Criterion and Related
 Results ... 441

13 Multipliers as Solutions to Elliptic Equations 445
 13.1 The Dirichlet Problem for the Linear Second-Order Elliptic
 Equation in the Space of Multipliers 445
 13.2 Bounded Solutions of Linear Elliptic Equations
 as Multipliers .. 447
 13.2.1 Introduction .. 447
 13.2.2 The Case $\beta > 1$... 448
 13.2.3 The Case $\beta = 1$.. 452
 13.2.4 Solutions as Multipliers from $W^{1,w_1(\rho)}_2(\Omega)$ into
 $W^{1,1}_2(\Omega)$. 454
 13.3 Solvability of Quasilinear Elliptic Equations in Spaces
 of Multipliers .. 456
 13.3.1 Scalar Equations in Divergence Form 457
 13.3.2 Systems in Divergence Form 458
 13.3.3 Dirichlet Problem for Quasilinear Equations
 in Divergence Form .. 461
 13.3.4 Dirichlet Problem for Quasilinear Equations
 in Nondivergence Form .. 463
 13.4 Coercive Estimates for Solutions of Elliptic equations
 in Spaces of Multipliers ... 467
 13.4.1 The Case of Operators in \mathbb{R}^n 467
 13.4.2 Boundary Value Problem in a Half-Space 469
 13.4.3 On the L_{∞}-Norm in the Coercive Estimate 473
 13.5 Smoothness of Solutions to Higher Order Elliptic Semilinear
 Systems ... 474
 13.5.1 Composition Operator in Classes of Multipliers 474
 13.5.2 Improvement of Smoothness of Solutions to Elliptic
 Semilinear Systems ... 477
14 Regularity of the Boundary in L_p-Theory of Elliptic Boundary Value Problems ... 479
14.1 Description of Results ... 479
14.2 Change of Variables in Differential Operators 481
14.3 Fredholm Property of the Elliptic Boundary Value Problem . . 483
14.3.1 Boundaries in the Classes $M^{i-1/p}_p, W^{i-1/p}_p,$ and $M^{i-1/p}_p(\delta)$... 483
14.3.2 A Priori L_p-Estimate for Solutions and Other Properties of the Elliptic Boundary Value Problem 484
14.4 Auxiliary Assertions .. 489
14.4.1 Some Properties of the Operator T 490
14.4.2 Properties of the Mappings λ and κ 491
14.4.3 Invariance of the Space $W^k_p \cap W^h_p$ Under a Change of Variables ... 492
14.4.4 The Space W^{-k}_p for a Special Lipschitz Domain 496
14.4.5 Auxiliary Assertions on Differential Operators in Divergence Form ... 498
14.5 Solvability of the Dirichlet Problem in $W^k_p(\Omega)$ 502
14.5.1 Generalized Formulation of the Dirichlet Problem 502
14.5.2 A Priori Estimate for Solutions of the Generalized Dirichlet Problem ... 502
14.5.3 Solvability of the Generalized Dirichlet Problem 503
14.5.4 The Dirichlet Problem Formulated in Terms of Traces . . . 504
14.6 Necessity of Assumptions on the Domain 507
14.6.1 A Domain Whose Boundary is in $M^{3/2}_3 \cap C^1$ but does not Belong to $M^{3/2}_3(\delta)$ 507
14.6.2 Necessary Conditions for Solvability of the Dirichlet Problem ... 509
14.6.3 Boundaries of the Class $M^{i-1/p}_p(\delta)$ 510
14.7 Local Characterization of $M^{i-1/p}_p(\delta)$ 513
14.7.1 Estimates for a Cutoff Function 513
14.7.2 Description of $M^{i-1/p}_p(\delta)$ Involving a Cutoff Function ... 515
14.7.3 Estimate for s_1 .. 516
14.7.4 Estimate for s_2 ... 520
14.7.5 Estimate for s_3 ... 523

15 Multipliers in the Classical Layer Potential Theory for Lipschitz Domains ... 531
15.1 Introduction ... 531
15.2 Solvability of Boundary Value Problems in Weighted Sobolev Spaces ... 537
15.2.1 (p, k, α)-Diffeomorphisms 537
15.2.2 Weak Solvability of the Dirichlet Problem 539
15.2.3 Main Result ... 542
15.3 Continuity Properties of Boundary Integral Operators 547
15.4 Proof of Theorems 15.1.1 and 15.1.2 551
 15.4.1 Proof of Theorem 15.1.1 551
 15.4.2 Proof of Theorem 15.1.2 557
15.5 Properties of Surfaces in the Class $M_p^r(\delta)$ 559
15.6 Sharpness of Conditions Imposed on $\partial \Omega$ 562
 15.6.1 Necessity of the Inclusion $\partial \Omega \in W_p^r$ in Theorem 15.2.1 562
 15.6.2 Sharpness of the Condition $\partial \Omega \in B_{\infty,p}^r$ 563
 15.6.3 Sharpness of the Condition $\partial \Omega \in M_p^r(\delta)$ in Theorem 15.2.1 564
 15.6.4 Sharpness of the Condition $\partial \Omega \in M_p^r(\delta)$ in Theorem 15.1.1 566
15.7 Extension to Boundary Integral Equations of Elasticity 568

16 Applications of Multipliers to the Theory of Integral Operators ... 573
 16.1 Convolution Operator in Weighted L_2-Spaces 573
 16.2 Calculus of Singular Integral Operators with Symbols in Spaces of Multipliers 575
 16.3 Continuity in Sobolev Spaces of Singular Integral Operators with Symbols Depending on x 579
 16.3.1 Function Spaces 580
 16.3.2 Description of the Space $M(H^{m,\mu} \rightarrow H^{1,\mu})$ 582
 16.3.3 Main Result 585
 16.3.4 Corollaries 588

References ... 591

List of Symbols ... 605

Author and Subject Index 607
Theory of Sobolev Multipliers
With Applications to Differential and Integral Operators
Maz'ya, V.; Shaposhnikova, T.O.
2009, XIV, 614 p. 2 illus., Hardcover
ISBN: 978-3-540-69490-8