Contents

List of Symbols ... 1

1 Introduction ... 3
 1.1 Problem Statements .. 3
 1.1.1 The Optimal Control Problem 3
 1.1.2 The Differential Game Problem 4
 1.2 Examples ... 5
 1.3 Static Optimization ... 18
 1.3.1 Unconstrained Static Optimization 18
 1.3.2 Static Optimization under Constraints 19
 1.4 Exercises .. 22

2 Optimal Control .. 23
 2.1 Optimal Control Problems with a Fixed Final State 24
 2.1.1 The Optimal Control Problem of Type A 24
 2.1.2 Pontryagin’s Minimum Principle 25
 2.1.3 Proof .. 25
 2.1.4 Time-Optimal, Frictionless, Horizontal Motion of a Mass Point .. 28
 2.1.5 Fuel-Optimal, Frictionless, Horizontal Motion of a Mass Point .. 32
 2.2 Some Fine Points .. 35
 2.2.1 Strong Control Variation and global Minimization of the Hamiltonian 35
 2.2.2 Evolution of the Hamiltonian 36
 2.2.3 Special Case: Cost Functional $J(u) = \pm x_i(t_b)$ 36
2.3 Optimal Control Problems with a Free Final State
 2.3.1 The Optimal Control Problem of Type C
 2.3.2 Pontryagin’s Minimum Principle
 2.3.3 Proof
 2.3.4 The LQ Regulator Problem
2.4 Optimal Control Problems with a Partially Constrained Final State
 2.4.1 The Optimal Control Problem of Type B
 2.4.2 Pontryagin’s Minimum Principle
 2.4.3 Proof
 2.4.4 Energy-Optimal Control
2.5 Optimal Control Problems with State Constraints
 2.5.1 The Optimal Control Problem of Type D
 2.5.2 Pontryagin’s Minimum Principle
 2.5.3 Proof
 2.5.4 Time-Optimal, Frictionless, Horizontal Motion of a Mass Point with a Velocity Constraint
2.6 Singular Optimal Control
 2.6.1 Problem Solving Technique
 2.6.2 Goh’s Fishing Problem
 2.6.3 Fuel-Optimal Atmospheric Flight of a Rocket
2.7 Existence Theorems
2.8 Optimal Control Problems with a Non-Scalar-Valued Cost Functional
 2.8.1 Introduction
 2.8.2 Problem Statement
 2.8.3 Geering’s Infimum Principle
 2.8.4 The Kalman-Bucy Filter
2.9 Exercises

3 Optimal State Feedback Control
 3.1 The Principle of Optimality
 3.2 Hamilton-Jacobi-Bellman Theory
 3.2.1 Sufficient Conditions for the Optimality of a Solution
 3.2.2 Plausibility Arguments about the HJB Theory
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.3</td>
<td>The LQ Regulator Problem</td>
<td>81</td>
</tr>
<tr>
<td>3.2.4</td>
<td>The Time-Invariant Case with Infinite Horizon</td>
<td>83</td>
</tr>
<tr>
<td>3.3</td>
<td>Approximatively Optimal Control</td>
<td>86</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Notation</td>
<td>87</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Lukes’ Method</td>
<td>88</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Controller with a Progressive Characteristic</td>
<td>92</td>
</tr>
<tr>
<td>3.3.4</td>
<td>LQQ Speed Control</td>
<td>96</td>
</tr>
<tr>
<td>3.4</td>
<td>Exercises</td>
<td>99</td>
</tr>
<tr>
<td>4</td>
<td>Differential Games</td>
<td>103</td>
</tr>
<tr>
<td>4.1</td>
<td>Theory</td>
<td>103</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Problem Statement</td>
<td>104</td>
</tr>
<tr>
<td>4.1.2</td>
<td>The Nash-Pontryagin Minimax Principle</td>
<td>105</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Proof</td>
<td>106</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Hamilton-Jacobi-Isaacs Theory</td>
<td>107</td>
</tr>
<tr>
<td>4.2</td>
<td>The LQ Differential Game Problem</td>
<td>109</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Solved with the Nash-Pontryagin Minimax Principle</td>
<td>109</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Solved with the Hamilton-Jacobi-Isaacs Theory</td>
<td>111</td>
</tr>
<tr>
<td>4.3</td>
<td>H_{∞}-Control via Differential Games</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Solutions to Exercises</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>131</td>
</tr>
</tbody>
</table>
Optimal Control with Engineering Applications
Geering, H.P.
2007, IX, 134 p., Softcover
ISBN: 978-3-540-69437-3