Table of Contents

1 Introduction: The Models .................................. 1

2 The Mathematical Models ................................ 11
  2.1 The Monge-Kantorovich Problem .......................... 11
  2.2 The Gilbert-Steiner Problem ............................. 12
  2.3 Three Continuous Extensions of the Gilbert-Steiner
       Problem ............................................... 13
      2.3.1 Xia’s Transport Paths ............................... 13
      2.3.2 Maddalena-Solimini’s Patterns ....................... 14
      2.3.3 Traffic Plans ...................................... 14
  2.4 Questions and Answers .................................. 16
     2.4.1 Plan ............................................... 17
  2.5 Related Problems and Models ............................ 19
     2.5.1 Measures on Sets of Paths ......................... 19
     2.5.2 Urban Transportation Models with more than One
           Transportation Means ............................... 20

3 Traffic Plans .............................................. 25
  3.1 Parameterized Traffic Plans ............................. 27
  3.2 Stability Properties of Traffic Plans .................... 29
     3.2.1 Lower Semicontinuity of Length, Stopping Time,
          Averaged Length and Averaged Stopping Time .......... 30
     3.2.2 Multiplicity of a Traffic Plan and its Upper
          Semicontinuity ....................................... 31
     3.2.3 Sequential Compactness of Traffic Plans ............ 33
  3.3 Application to the Monge-Kantorovich Problem ........... 34
  3.4 Energy of a Traffic Plan and Existence of a Minimizer ...... 35

4 The Structure of Optimal Traffic Plans ..................... 39
  4.1 Speed Normalization .................................... 39
  4.2 Loop-Free Traffic Plans ................................. 41
  4.3 The Generalized Gilbert Energy .......................... 42
     4.3.1 Rectifiability of Traffic Plans with Finite Energy .... 44
  4.4 Appendix: Measurability Lemmas .......................... 44
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Operations on Traffic Plans</td>
<td>47</td>
</tr>
<tr>
<td>5.1</td>
<td>Elementary Operations</td>
<td>47</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Restriction, Domain of a Traffic Plan</td>
<td>47</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Sum of Traffic Plans (or Union of their Parameterizations)</td>
<td>48</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Mass Normalization</td>
<td>48</td>
</tr>
<tr>
<td>5.2</td>
<td>Concatenation</td>
<td>48</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Concatenation of Two Traffic Plans</td>
<td>48</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Hierarchical Concatenation (Construction of Infinite Irrigating Trees or Patterns)</td>
<td>49</td>
</tr>
<tr>
<td>5.3</td>
<td>A Priori Properties on Minimizers</td>
<td>51</td>
</tr>
<tr>
<td>5.3.1</td>
<td>An Assumption on $\mu^+, \mu^-$ and $\pi$ Avoiding Fibers with Zero Length</td>
<td>51</td>
</tr>
<tr>
<td>5.3.2</td>
<td>A Convex Hull Property</td>
<td>53</td>
</tr>
<tr>
<td>6</td>
<td>Traffic Plans and Distances between Measures</td>
<td>55</td>
</tr>
<tr>
<td>6.1</td>
<td>All Measures can be Irrigated for $\alpha &gt; 1 - \frac{1}{N}$</td>
<td>56</td>
</tr>
<tr>
<td>6.2</td>
<td>Stability with Respect to $\mu^+$ and $\mu^-$</td>
<td>58</td>
</tr>
<tr>
<td>6.3</td>
<td>Comparison of Distances between Measures</td>
<td>59</td>
</tr>
<tr>
<td>7</td>
<td>The Tree Structure of Optimal Traffic Plans and their Approximation</td>
<td>65</td>
</tr>
<tr>
<td>7.1</td>
<td>The Single Path Property</td>
<td>65</td>
</tr>
<tr>
<td>7.2</td>
<td>The Tree Property</td>
<td>70</td>
</tr>
<tr>
<td>7.3</td>
<td>Decomposition into Trees and Finite Graphs Approximation</td>
<td>71</td>
</tr>
<tr>
<td>7.4</td>
<td>Bi-Lipschitz Regularity</td>
<td>77</td>
</tr>
<tr>
<td>8</td>
<td>Interior and Boundary Regularity</td>
<td>79</td>
</tr>
<tr>
<td>8.1</td>
<td>Connected Components of a Traffic Plan</td>
<td>79</td>
</tr>
<tr>
<td>8.2</td>
<td>Cuts and Branching Points of a Traffic Plan</td>
<td>81</td>
</tr>
<tr>
<td>8.3</td>
<td>Interior Regularity</td>
<td>82</td>
</tr>
<tr>
<td>8.3.1</td>
<td>The Main Lemma</td>
<td>82</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Interior Regularity when $\text{supp}(\mu^+) \cap \text{supp}(\mu^-) = \emptyset$</td>
<td>85</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Interior Regularity when $\mu^+$ is a Finite Atomic Measure</td>
<td>89</td>
</tr>
<tr>
<td>8.4</td>
<td>Boundary Regularity</td>
<td>91</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Further Regularity Properties</td>
<td>93</td>
</tr>
<tr>
<td>9</td>
<td>The Equivalence of Various Models</td>
<td>95</td>
</tr>
<tr>
<td>9.1</td>
<td>Irrigating Finite Atomic Measures (Gilbert-Steiner) and Traffic Plans</td>
<td>95</td>
</tr>
<tr>
<td>9.2</td>
<td>Patterns (Maddalena et al.) and Traffic Plans</td>
<td>96</td>
</tr>
<tr>
<td>9.3</td>
<td>Transport Paths (Qinglan Xia) and Traffic Plans</td>
<td>97</td>
</tr>
<tr>
<td>9.4</td>
<td>Optimal Transportation Networks as Flat Chains</td>
<td>100</td>
</tr>
</tbody>
</table>
# Table of Contents

10 **Irrigability and Dimension** .................................................. 105  
10.1 Several Concepts of Dimension of a Measure and Irrigability Results .................. 105  
10.2 Lower Bound on $d(\mu)$ .................................................. 111  
10.3 Upper Bound on $d(\mu)$ .................................................. 112  
10.4 Remarks and Examples .................................................. 114  

11 **The Landscape of an Optimal Pattern** ........................................ 119  
11.1 Introduction .................................................. 119  
11.1.1 Landscape Equilibrium and OCNs in Geophysics .................. 119  
11.2 A General Development Formula ........................................ 122  
11.3 Existence of the Landscape Function and Applications .................. 124  
11.3.1 Well-Definedness of the Landscape Function .................. 124  
11.3.2 Variational Applications ........................................ 127  
11.4 Properties of the Landscape Function ...................................... 128  
11.4.1 Semicontinuity .................................................. 128  
11.4.2 Maximal Slope in the Network Direction .................. 129  
11.5 Hölder Continuity under Extra Assumptions .................. 131  
11.5.1 Campanato Spaces by Medians .................................. 131  
11.5.2 Hölder Continuity of the Landscape Function .................. 132  

12 **The Gilbert-Steiner Problem** .............................................. 135  
12.1 Optimum Irrigation from One Source to Two Sinks .................. 135  
12.2 Optimal Shape of a Traffic Plan with given Dyadic Topology .................. 143  
12.2.1 Topology of a Graph ........................................ 143  
12.2.2 A Recursive Construction of an Optimum with Full Steiner Topology .................. 144  
12.3 Number of Branches at a Bifurcation .................................. 145  

13 **Dirac to Lebesgue Segment: A Case Study** .................................... 151  
13.1 Analytical Results .................................................. 152  
13.1.1 The Case of a Source Aligned with the Segment .................. 152  
13.2 A “T” Structure” is not Optimal .................................. 153  
13.3 The Boundary Behavior of an Optimal Solution .................. 155  
13.4 Can Fibers Move along the Segment in the Optimal Structure? .................. 159  
13.5 Numerical Results .................................................. 159  
13.5.1 Coding of the Topology .................................. 159  
13.5.2 Exhaustive Search ........................................ 160  
13.6 Heuristics for Topology Optimization .................................. 160  
13.6.1 Multiscale Method ........................................ 161  
13.6.2 Optimality of Subtrees .................................. 164  
13.6.3 Perturbation of the Topology .................................. 165
# Table of Contents

14 Application: Embedded Irrigation Networks ........................ 169
  14.1 Irrigation Networks made of Tubes ............................. 169
  14.1.1 Anticipating some Conclusions .............................. 171
  14.2 Getting Back to the Gilbert Functional ....................... 172
  14.3 A Consequence of the Space-filling Condition ................ 175
  14.4 Source to Volume Transfer Energy .............................. 176
  14.5 Final Remarks ............................................... 177

15 Open Problems .................................................... 179
  15.1 Stability .................................................... 179
  15.2 Regularity .................................................. 179
  15.3 The who goes where Problem .................................. 180
  15.4 Dirac to Lebesgue Segment .................................... 180
  15.5 Algorithm or Construction of Local Optima .................... 181
  15.6 Structure .................................................. 182
  15.7 Scaling Laws ................................................ 183
  15.8 Local Optimality in the Case of Non Irrigability ............ 183

A Skorokhod Theorem .................................................. 185

B Flows in Tubes ...................................................... 189
  B.1 Poiseuille’s Law ............................................. 189
  B.2 Optimality of the Circular Section ............................ 190

C Notations .......................................................... 191

References ........................................................... 193

Index ................................................................. 199