Contents

Contributors XXI
Abbreviations XXXI

Introduction 1

1 Understanding Landscapes through Knowledge Management Frameworks, Spatial Models, Decision Support Tools and Visualisation 3
1.1 Introduction 3
1.2 Part 1: Natural Resource Knowledge Management Frameworks and Tools 5
1.3 Part 2: Integrating the Ecology of Landscapes into Landscape Analysis and Visualisation 7
1.4 Part 3: Socioeconomic Dimensions to Landscapes 9
1.5 Part 4: Land Use Change and Scenario Modelling 11
1.6 Part 5: Landscape Visualisation 13
1.7 Future Challenges 15

Part 1: Natural Resource Knowledge Management Frameworks and Tools 17

2 Reading between the Lines: Knowledge for Natural Resource Management 19
2.1 Introduction 19
2.2 Knowledge Hierarchy 20
2.3 Timelag between Question and Answer 23
2.4 Organising the Questions 24
2.5 Integrating Disciplines 26
2.6 Conclusion 27
3 Improving the Use of Science in Evidence-based Policy: Some Victorian Experiences in Natural Resource Management 29
3.1 Context 29
3.1.1 Historical Perspective 30
3.1.2 The Policy Process: Towards Evidence-based Policy 31
3.1.3 Use of Science as Evidence in Policy 32
3.2 Some Victorian Experiences in Natural Resource Management 35
3.2.1 Survey of Policy Analysts 37
3.2.2 Market Research 38
3.2.3 Improving the Utility of Project Outputs 40
3.2.4 Observation of How Policy Decisions Are Made 40
3.3 Case Studies of Successful Science–Policy Influence 41
3.3.1 Sawlogs for Salinity 42
3.3.2 Salinity Investment Framework 3 42
3.3.3 Soil Health 43
3.3.4 Greenhouse in Agriculture 43
3.4 Discussion 44
3.4.1 Toward Better Use of Science in Evidence-based Policy 44
3.5 Conclusion 46

4 The Catchment Analysis Tool: Demonstrating the Benefits of Interconnected Biophysical Models 49
4.1 Introduction 50
4.2 Catchment Analysis Tool: Background and Description 51
4.2.1 The CAT Interface 54
4.2.2 CAT Input Data 56
4.2.3 The CAT Model Components 59
4.2.4 Model Calibration and Conceptualisation 61
4.3 Case Study 61
4.3.1 Hypothetical Case Study 61
4.3.2 Results and analysis 66
4.4 Validation and Model Improvement 68
4.5 Conclusion 69

5 The Application of a Simple Spatial Multi-Criteria Analysis Shell to Natural Resource Management Decision Making 73
5.1 Introduction 74
5.2 Multi-criteria Analysis 74
5.2.1 Spatial Applications 75
5.2.2 The Decision-making Process 77
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3</td>
<td>The MCAS-S Approach</td>
<td>79</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Design Principles</td>
<td>79</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Key Functions</td>
<td>80</td>
</tr>
<tr>
<td>5.4</td>
<td>Applications</td>
<td>82</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Prioritising Revegetation Investment</td>
<td>82</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Assessing the Sustainability of Extensive Grazing</td>
<td>85</td>
</tr>
<tr>
<td>5.5</td>
<td>Future Trends</td>
<td>89</td>
</tr>
<tr>
<td>5.6</td>
<td>Conclusion</td>
<td>90</td>
</tr>
<tr>
<td>5.7</td>
<td>Future Research Directions</td>
<td>91</td>
</tr>
<tr>
<td>6</td>
<td>Platform for Environmental Modelling Support:</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>a Grid Cell Data Infrastructure for Modellers</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>98</td>
</tr>
<tr>
<td>6.2</td>
<td>Background</td>
<td>100</td>
</tr>
<tr>
<td>6.3</td>
<td>Methodology</td>
<td>102</td>
</tr>
<tr>
<td>6.4</td>
<td>Progress and Discussions</td>
<td>103</td>
</tr>
<tr>
<td>6.5</td>
<td>The PEMS Demonstrator Project</td>
<td>105</td>
</tr>
<tr>
<td>6.5.1</td>
<td>National Seasonal Crop Monitoring and Forecasting</td>
<td>105</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Develop and Demonstrate a Market-based Approach to Environmental Policy on Private Land</td>
<td>108</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Wildfire Planning: Consequence of Loss Modelling</td>
<td>109</td>
</tr>
<tr>
<td>6.5.4</td>
<td>Land Use Data, Modelling and Reporting</td>
<td>111</td>
</tr>
<tr>
<td>6.6</td>
<td>Conclusion</td>
<td>115</td>
</tr>
<tr>
<td>7</td>
<td>Part 2: Integrating the Ecology of Landscapes into Landscape Analysis and Visualisation</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>Looking at Landscapes for Biodiversity: Whose View Will Do?</td>
<td>121</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>122</td>
</tr>
<tr>
<td>7.2</td>
<td>To be Human is to Err</td>
<td>122</td>
</tr>
<tr>
<td>7.3</td>
<td>What’s Good for the Goose?</td>
<td>124</td>
</tr>
<tr>
<td>7.4</td>
<td>Consider the Lilies</td>
<td>127</td>
</tr>
<tr>
<td>7.5</td>
<td>Best is Bunkum</td>
<td>128</td>
</tr>
<tr>
<td>7.6</td>
<td>Varied Perspectives</td>
<td>129</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Mapping and Modelling Terrain, Hydrological, Pedological and Geological Features and Climate</td>
<td>129</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Vegetation Mapping Using Remotely Sensed Data, Including Vegetation Condition and Temporal Variability</td>
<td>130</td>
</tr>
<tr>
<td>7.6.3</td>
<td>Mapping and Modelling Movement</td>
<td>131</td>
</tr>
<tr>
<td>7.6.4</td>
<td>Integrating Multiple Perspectives</td>
<td>133</td>
</tr>
<tr>
<td>7.7</td>
<td>Conclusion</td>
<td>135</td>
</tr>
</tbody>
</table>
8 Native Vegetation Condition: Site to Regional Assessments 139
 8.1 Introduction 140
 8.2 Measuring Vegetation Condition at Sites 141
 8.3 Measuring Vegetation Condition across Regions 142
 8.4 Case Study: Vegetation Condition in the Murray Catchment, New South Wales 143
 8.4.1 Study Area 143
 8.4.2 Site Data Collection 144
 8.4.3 Modelling from the Site to the Region 146
 8.5 Results and Discussion for the Murray Catchment Case Study 149
 8.6 Conclusion 152
 8.7 Future Research Directions 153

9 Towards Adaptive Management of Native Vegetation in Regional Landscapes 159
 9.1 Introduction 159
 9.2 What Adaptive Management is and is not 161
 9.2.1 Step i: Statement of Objectives, Constraints and Performance Measures 163
 9.2.2 Step ii: Specification of Management Options 164
 9.2.3 Step iii: System Modelling and Model Credibility 165
 9.2.4 Step iv: Allocation, implementation and Monitoring — Closing the Loop 165
 9.3 Managing and Monitoring Native Vegetation 167
 9.3.1 An Example of a Formal Approach to Adaptive Management of Vegetation Condition 169
 9.4 Research 175
 9.5 Conclusion 176
 9.6 Future Directions 177
 Appendix 181

10 Revegetation and the Significance of Timelags in Provision of Habitat Resources for Birds 183
 10.1 Introduction 184
 10.2 Methodology 186
 10.2.1 Model Description 186
 10.3 Case Study 191
 10.3.1 Results 192
 10.3.2 Discussion 197
 10.4 Caveats and Extensions 199
 Appendixes 204
11 The Application of Genetic Markers to Landscape Management 211
11.1 Introduction 212
 11.1.1 The Need for Information on How Biota Occupies and Moves through Landscapes 212
 11.1.2 A Spectrum of ‘Genetics’ in Landscape Management and Planning 213
 11.1.3 Molecular Population Biology Supplies Information Essential for Landscape Planning and Management 213
11.2 Background 215
 11.2.1 Three Levels of Analysis Assess Three Levels in Time and Space 215
 11.2.2 Main Molecular Tools in Landscape Molecular Population Biology 217
11.3 Case Studies 220
 11.3.1 Impacts of Habitat Fragmentation on Cunningham’s Skinks 220
 11.3.2 Dispersal and Gene Flow of Greater Gliders through Forest Fragmented by Pine Plantation 221
 11.3.3 Catchments Catch All: Congruent Patterns in Diverse Invertebrate Fauna in Decaying Wood at a Landscape Scale 222
11.4 Future Trends 223
11.5 Conclusion 225
11.6 Future Research Directions 225
Appendix 231

12 Scenario Analysis with Performance Indicators: a Case Study for Forest Linkage Restoration 235
12.1 Introduction 236
12.2 Background 237
12.3 Linkage restoration 239
 12.3.1 Indicator Rule 1: Site Recovery Capacity 240
 12.3.2 Indicator Rule 2: Site Biodiversity Value 241
 12.3.3 Indicator Rule 3: Landscape Linkage Qualities 242
 12.3.4 Indicator Rule 4: Landscape Connectivity 242
12.4 Atherton Tablelands Case Study 243
 12.4.1 Restoration scenarios 245
 12.4.2 Scenario Evaluation 246
12.5 Conclusion 247
Part 3: Socioeconomic Dimensions to Landscapes

13 Strategic Spatial Governance: Deriving Social–Ecological Frameworks for Managing Landscapes and Regions

13.1 Introduction

13.2 A Potted History of Catchments for Resource Governance

13.3 Defining Regions for Resource Governance

13.3.1 Principle 1

13.3.2 Principle 2

13.3.3 Principle 3

13.4 Application of Principles to Spatial Analysis

13.4.1 Delineating Civic Regions from a Social Surface

13.4.2 Deriving a Hierarchy of Civic Regions

13.4.3 Deriving Ecoregions

13.4.4 Integrating Ecoregions and Civic Regions through Boundary Optimisation

13.4.5 Comparing the Performance of Regions

13.5 Conclusion: Past, Present and Future Resource Governance

13.6 Future Directions

14 Placing People at the Centre of Landscape Assessment

14.1 Introduction

14.2 Background

14.3 Methodology

14.3.1 Pressure–State–Response Model

14.3.2 Driving Forces–Pressure–State–Impact–Response Model

14.3.3 Millennium Ecosystem Assessment Framework

14.3.4 Indicator Selection

14.4 A Landscape Approach for Victoria

14.4.1 Definitions of Five Victoria Landscapes

14.4.2 The Role of Indicators

14.5 Case Study 1: Semi-arid Landscape

14.5.1 Overview

14.5.2 Employment Indicator

14.5.3 Index of Stream Condition Indicator

14.5.4 Land Use Diversity Indicator

14.5.5 Management Response

14.6 Case Study 2: Coastal Landscape

14.6.1 Overview

14.6.2 Visitors to Parks and Reserves Indicator

14.6.3 Ratio of Land Value to Production Value Indicator
14.6.4 Land Use Diversity Indicator 297
14.6.5 Policy Response 298
14.7 Overview of Results 299
14.8 Conclusion 299
14.9 Future Research Directions 300

15 The Social Landscapes of Rural Victoria 305
15.1 Introduction 305
15.2 A Narrative of Rural Transformation in Australia 306
15.2.1 International Agricultural Competition 306
15.2.2 Agricultural Restructuring 307
15.2.3 Amenity Values in the Rural Land Market 307
15.2.4 Indicators Derived from the Narrative 308
15.3 From Indicators to Social Landscapes 310
15.3.1 Factor Analysis Using the Principal Components Method 310
15.3.2 Creating a Geography of Amenity and Intensification 314
15.4 Five Social Landscapes 315
15.4.1 The Production Landscape 316
15.4.2 The Transitional Landscape 317
15.4.3 The Amenity Farming Landscape 318
15.4.4 The High Amenity Landscape 319
15.4.5 The Intensive Agriculture Landscape 319
15.5 Conclusion 322
15.6 Future Research Directions 323

16 A Decision Aiding System for Predicting People’s Scenario Preferences 327
16.1 Introduction 327
16.2 Background 328
16.3 An Extra Step for the SDSS Discipline 329
16.4 Description of the Preference Prediction Software 331
16.4.1 Finding a Larger Set of Criteria 331
16.4.2 Finding Relationships between Criterion Scores and Overall Scenario Merit 331
16.4.3 The Underlying Assumption 333
16.5 An Urban Planning Case Study Application of the Preference Prediction Software 334
16.5.1 Assigning Criteria Scores to the Scenarios 335
16.5.2 Predicting Scenario Ratings for Overall Merit 336
16.5.3 Checking the Personal Characteristics of the Advisors 338
16.5.4 Predicting Scenario Merit Ratings on Behalf of Past Workshops 338
16.5.5 Exploring How Scenario Ratings Were Derived 339
16.5.6 Searching for Reasons behind Each Scenario Merit Rating 342
16.5.7 Predicting All Groups’ Preferences Simultaneously 345
16.6 Future Trends 347
16.7 Conclusion 347
16.8 Future Research Directions 348

Part 4: Land Use Change and Scenario Modelling 351

17 Mapping and Modelling Land Use Change: an Application of the SLEUTH Model 353
17.1 Introduction 353
17.2 Methodology 355
17.3 Results and Discussion 358
17.4 Conclusion 364

18 Uncertainty in Landscape Models: Sources, Impacts and Decision Making 367
18.1 Introduction 368
18.2 Models, Variability and Sources of Uncertainty 369
18.2.1 Model Structure 370
18.2.2 Natural Variability, Temporal Resolution and Spatial Resolution 371
18.2.3 Taxonomic Scale and Data Collection 375
18.2.4 Summary on Models and Sources of Uncertainty 377
18.3 Model Uncertainty and Decision Making 377
18.4 Conclusion 381

19 Assessing Water Quality Impacts of Community Defined Land Use Change Scenarios for the Douglas Shire, Far North Queensland 383
19.1 Context and Case Study Location 384
19.2 Dialogue over Sustainable Future Landscapes and Seascapes 386
19.3 Methodology of an Application of a Social–Ecological Framework for Sustainable Landscape Planning 387
19.3.1 Stage I: Community Perceptions and Visions 387
19.3.2 Stage II: Community-driven Landscape Scenarios 389
Part 5: Landscape Visualisation 455

22 Understanding Place and Agreeing Purpose: the Role of Virtual Worlds 457
 22.1 Introduction 457
 22.2 Established Options for Understanding Place 459
 22.3 Emerging Options 460
 22.4 Development Methodology 461
 22.4.1 SIEVE 461
 22.4.2 Links to Decision Support Systems 463
 22.4.3 Virtual Decision Environment 463
 22.5 Conclusion 464

23 Geographic Landscape Visualisation in Planning Adaptation to Climate Change in Victoria, Australia 469
 23.1 Introduction 470
 23.2 Context of Visualisation and ‘Sense of Place’ 471
 23.3 Climate Change Predictions and Impacts in South-eastern Australia 472
 23.3.1 Climate Change and the Need for Ecological Connectivity 473
 23.3.2 Biolink Zones in South-eastern Australia 474
 23.3.3 Visualisation Tools for Explaining the Context of Biolinks 474
 23.3.4 Visualisation of Environmental Change at a Site over Time 475
 23.4 Realism behind Visualisation Technology 479
 23.5 Realism at the Front End 480
 23.6 Future Directions 483
 23.7 Conclusion 484

24 Visualising Alternative Futures 489
 24.1 Introduction 490
 24.2 The Barwon Heads Peri-urban Development Visualisation Tool 491
 24.3 The Central Business District of Melbourne What the City Might Be? Prototype 495
 24.3.1 Marvellous Melbourne 495
 24.3.2 Melbourne and the Removal of Significant Buildings 497
 24.3.3 Prototype World 498
 24.3.4 Initial Impressions 502
Landscape Analysis and Visualisation
Spatial Models for Natural Resource Management and Planning
Pettit, C.; Cartwright, W.; Bishop, I.; Lowell, K.; Pullar, D.; Duncan, D. (Eds.)
2008, XXXII, 614 p., Hardcover
ISBN: 978-3-540-69167-9