Contents

1 Chemistry and Structure of Cuticles as Related to Water and Solute Permeability ... 1
 1.1 Polymer Matrix ... 2
 1.2 Cutin Composition ... 3
 1.3 Soluble Cuticular Lipids 8
 1.3.1 Extraction and Classification of Waxes 8
 1.3.2 Chemistry of Waxes 10
 1.3.3 Special Aspects of Wax Analysis 11
 1.4 Fine Structure of Cuticles 14
 1.4.1 Nomenclature 15
 1.4.2 Transversal Heterogeneity 15
 1.4.2.1 Light Microscopy 15
 1.4.2.2 Scanning Electron Microscopy 18
 1.4.2.3 Transmission Electron Microscopy 20
 1.4.3 Cuticle Synthesis 26
 1.4.4 Lateral Heterogeneity 27
 Problems .. 27
 Solutions .. 28

2 Quantitative Description of Mass Transfer 31
 2.1 Models for Analysing Mass Transfer 32
 2.1.1 Model 1 ... 33
 2.1.2 Model 2 ... 35
 2.1.3 Model 3 ... 37
 2.1.4 Conductance and Resistance 37
 2.2 Steady State Diffusion Across a Stagnant Water Film 38
 2.3 Steady State Diffusion Across a Stagnant Water Film Obstructed by Cellulose and Pectin 39
 2.4 Steady State Diffusion of a Solute Across a Dense Non-Porous Membrane .. 40
 2.4.1 The Experiment ... 43
Contents

2.5 Diffusion Across a Membrane with Changing Concentrations
2.5.1 The Experiment
2.6 Determination of the Diffusion Coefficient from Sorption or Desorption Kinetics
2.6.1 The Experiment
2.7 Summary
Problems
Solutions

3 Permeance, Diffusion and Partition Coefficients: Units and Their Conversion
3.1 Units of Permeability
3.1.1 Example
3.2 Diffusion Coefficients
3.3 Partition Coefficients
Problems
Solutions

4 Water Permeability
4.1 Water Permeability of Synthetic Polymer Membranes and Polymer Matrix Membranes: A Comparison of Barrier Properties
4.2 Isoelectric Points of Polymer Matrix Membranes
4.3 Ion Exchange Capacity
4.3.1 Cation Selectivity
4.4 Water Vapour Sorption and Permeability as Affected by pH, Cations and Vapour Pressure
4.5 Diffusion and Viscous Transport of Water: Evidence for Aqueous Pores in Polymer Matrix Membranes
4.5.1 Lipophilic and Hydrophilic Pathways in the Polymer Matrix
4.5.2 Permeability of the Pore and Cutin Pathways
4.5.3 Effect of Partial Pressure of Water Vapour on Permeances of the Pore and Cutin Pathways
4.6 Water Permeability of Isolated Astomatous Cuticular Membranes
4.6.1 Comparing Water Permeability of CM with that of MX
4.6.2 Water Permeability of CM
4.6.2.1 Chemical Composition of Wax and Its Relationship to Water Permeability
4.6.2.2 Water Permeability of CM and Diffusion of Stearic Acid in Wax
4.6.2.3 Co-Permeation of Water and Lipophilic Solutes
4.6.2.4 Effect of Partial Vapour Pressure (Humidity) on Permeability of CM
4.6.2.5 Effect of AgCl Precipitates on Water Permeance

Contents xi

4.6.3 Diffusion Coefficients of Water in CM and Cuticular Wax . . 107
 4.6.3.1 Measurement of D_w for Water in CM from
 Hold-up Times 107
 4.6.3.2 Estimation of D_w from Diffusion of Lipophilic
 Neutral Molecules 109
4.6.4 Water Permeability of Paraffin Waxes 111
 4.6.4.1 Water Permeance of Polyethylene
 and Paraffin Wax 111
 4.6.4.2 Water Permeability of Lipid Monolayers 114
 4.6.4.3 Estimation of Water Sorption in Wax and
 Thickness of the Waxy Transpiration Barrier 116
4.7 Permeances of Adaxial and Abaxial Cuticles 118
4.8 Water Permeability of Isolated Cuticular Membranes
 as Compared to Intact Leaves 119
4.9 The Shape of the Water Barrier in Plant Cuticles 120
Problems .. 121
Solutions .. 122

5 Penetration of Ionic Solutes .. 125
5.1 Localisation of Aqueous Pores in Cuticles 126
5.2 Experimental Methods ... 129
5.3 Cuticular Penetration of Electrolytes 133
 5.3.1 Effect of Wetting Agents 133
 5.3.2 Penetration of Calcium and Potassium Salts 134
 5.3.3 Rate Constants Measured with Leaf CM from Different
 Species 136
 5.3.4 Size Selectivity of Aqueous Pores 137
 5.3.5 Penetration of Organic Ions and Zwitter Ions 140
5.4 Cuticular Penetration of Fe Chelates 142
Problems .. 143
Solutions .. 144

6 Diffusion of Non-Electrolytes 145
6.1 Sorption in Cuticular Membranes, Polymer Matrix,
 Cutin and Waxes ... 145
 6.1.1 Definition and Determination of Partition Coefficients .. 145
 6.1.2 Cuticle/Water Partition Coefficients K_{cw} 146
 6.1.3 Wax/Water Partition Coefficients K_{ww} 148
 6.1.4 Concentration Dependence of Partition Coefficients 149
 6.1.5 Prediction of Partition Coefficients 149
 6.1.6 Problems Related to the Measurement of Partition
 Coefficients .. 151
 6.1.6.1 Solutes with Ionisable Acidic and Basic Groups .. 151
 6.1.6.2 Hydrophobic Solutes with Extremely
 Low Water Solubility 151
7.4.2 Effects of Plasticisers and Temperature on Solute Mobility in CM .. 225
7.4.3 Effects of Plasticisers on the Mobility of Polar Solutes in CM .. 227
7.5 Effects of Plasticisers on Water and Ion Transport Problems ... 229
Solutions .. 230

8 Effects of Temperature on Sorption and Diffusion of Solutes and Penetration of Water

8.1 Sorption from Aqueous Solutions 233
 8.1.1 Sorption Isotherms and Partition Coefficients 234
 8.1.2 Thermodynamics of Sorption 237
8.2 Solute Mobility in Cuticles 239
 8.2.1 Effect of Temperature on Rate Constants k^* 241
 8.2.2 Thermodynamics of Solute Diffusion in CM 243
8.3 Water Permeability in CM and MX 247
8.4 Thermal Expansion of CM, MX, Cutin and Waxes 251
8.5 Water Permeability of Synthetic Polymers as Affected by Temperatures 253
 8.5.1 E_p, E_D and ΔH_S Measured with Synthetic Polymers 254
Solutions .. 258

9 General Methods, Sources of Errors, and Limitations in Data Analysis

9.1 Isolation of Cuticular Membranes 259
9.2 Testing Integrity of Isolated CM 261
9.3 Effects of Holes on Permeance, Rate Constants and Diffusion Coefficients 262
9.4 Distribution of Water and Solute Permeability 263
9.5 Very High or Very Low Partition Coefficients 264
9.6 Cutin and Wax Analysis and Preparation of Reconstituted Cuticular Wax 264
9.7 Measuring Water Permeability 266
9.8 Measuring Solute Permeability 268

Appendix .. 275

References ... 285
Water and Solute Permeability of Plant Cuticles
Measurement and Data Analysis
Schreiber, L.; Schönherr, J.
2009, XIII, 299 p., Hardcover
ISBN: 978-3-540-68944-7