Contents

1 Introduction to Internal Friction: Terms and Definitions . . . 1
 1.1 General Phenomenon .. 1
 1.2 Types of Mechanical Behaviour 2
 1.3 Anelastic Relaxation 3
 1.4 Thermal Activation ... 5
 1.5 Other Types of Internal Friction 7
 1.6 Measurement of Internal Friction 8

2 Anelastic Relaxation Mechanisms of Internal Friction 11
 2.1 Introduction .. 11
 2.2 Point Defect Relaxation 11
 2.2.1 The Snoek Relaxation 12
 2.2.2 Relaxation due to Foreign Interstitial Atoms
 (C, N, O) in fcc and Hexagonal Metals 28
 2.2.3 The Zener Relaxation 32
 2.2.4 Anelastic Relaxation due to Hydrogen 36
 2.2.5 Other Kinds of Point-Defect Relaxation 48
 2.3 Dislocation Relaxation 50
 2.3.1 Intrinsic Dislocation Relaxation Mechanisms:
 Bordoni and Niblett–Wilks Peaks 51
 2.3.2 Coupling of Dislocations and Point Defects:
 Hasiguti and Snoek–Köster Peaks and Dislocation-
 Enhanced Snoek Effect 61
 2.3.3 Other Kinds of Dislocation Relaxation 73
 2.4 Interface Relaxation 77
 2.4.1 Grain Boundary Relaxation 78
 2.4.2 Twin Boundary Relaxation 82
 2.4.3 Nanocrystalline Metals 83
 2.5 Thermoelastic Relaxation 87
 2.5.1 Theory .. 87
X Contents

2.5.2 Properties and Applications of Thermoelastic Damping .. 90
2.6 Relaxation in Non-Crystalline and Complex Structures 95
 2.6.1 Amorphous Alloys .. 97
 2.6.2 Quasicrystals and Approximants 113

3 Other Mechanisms of Internal Friction 121
 3.1 Introduction ... 121
 3.2 Internal Friction at Phase Transformations 121
 3.2.1 Martensitic Transformation 121
 3.2.2 Polymorphic and Other Phase Transformations 129
 3.2.3 Precipitation and Dissolution of a Second Phase 133
 3.3 Dislocation-Related Amplitude-Dependent Internal Friction (ADIF) 136
 3.4 Magneto-Mechanical Damping 144
 3.5 Mechanisms of Damping in High-Damping Materials 148

4 Internal Friction Data of Crystalline Metals and Alloys (Tables) 157
 4.1 Copper and Noble Metals and their Alloys 158
 4.2 Alkaline and Alkaline Earth Metals and their Alloys 189
 4.3 Metals of the IIA–VIIA Groups and their Alloys 196
 4.4 Metals of the IIIB Group, Rare Earth Metals and Actinides 223
 4.4.1 Rare Earth and Group IIIB Metals 223
 4.4.2 Actinides .. 235
 4.5 Metals of the IVB Group 238
 4.5.1 Titanium and its Alloys 238
 4.5.2 Zirconium and its Alloys 263
 4.5.3 Hafnium and its Alloys 275
 4.6 Metals of the VB Group 276
 4.6.1 Vanadium and its Alloys 276
 4.6.2 Niobium and its Alloys 287
 4.6.3 Tantalum and its Alloys 321
 4.7 Metals of the VIB Group 331
 4.7.1 Chromium and its Alloys 331
 4.7.2 Molybdenum and its Alloys 338
 4.7.3 Tungsten and its Alloys 346
 4.8 Metals of the VIIB group: Mn and Re 352
 4.9 Iron and Iron-Based Alloys 356
 4.9.1 Fe (“pure”) .. 357
 4.9.2 Fe–Interstitial Atoms (C, H, N), Other Elements (As, B, Ce, La, P, S, Y) <1%, and Low Carbon Steels ... 360
 4.9.3 Fe–(<3%)Me–(C, N) and Low Alloyed Steels (Me = Metal) 367
 4.9.4 Fe–Al Alloys and Steels (Mainly bcc and bcc-Based) ... 372
4.9.5 Fe–Al-Based Ternary and Multi-Component Alloys
(e.g., Fe–Al–Cr, Fe–Al–Ge, Fe–Al–Si, etc.) 380
4.9.6 Fe–Co, –Ge, –Si, –Mo, –V, –W Alloys 385
4.9.7 Fe–Cr-Based Steels and Alloys 389
4.9.8 Fe–Mn-Based Steels and Alloys 397
4.9.9 Fe–Ni-Based Steels and Alloys 402
4.9.10 Other Fe-Based Multi-Component Alloys 408
4.10 Co, Ni and their Alloys 413

5 Internal Friction Data of Special Types of Metallic Materials (Tables) 423
5.1 Hydrogen-Absorbing Alloys 424
5.2 Metallic Glasses 439
5.3 Quasicrystals and Other Complex Alloys 449

References 453

Index 535
Internal Friction in Metallic Materials
A Handbook
Blanter, M.S.; Golovin, I.S.; Neuhäuser, H.; Sinning, H.-R.
2007, XVII, 542 p., Hardcover
ISBN: 978-3-540-68757-3