PART I
INTRODUCTION TO ASYMMETRIC CONTINUUM
AND EXPERIMENTAL EVIDENCE
OF ROTATION MOTIONS

1 Introduction to Asymmetric Continuum: Fundamental Point Deformations
Roman Teisseyre and Marek Górski

1.1 Introduction
1.2 Self-Field Nuclei: Deviations from Classical Elasticity
1.3 Basic Deformations and Simple Motions in an Asymmetric Continuum
1.4 Conclusions

2 Measurement of Short-Period Weak Rotation Signals
Leszek R. Jaroszewicz and Jan Wiszniowski

2.1 Definition of Rotation and a Review of the Measurement Methods
2.2 Classification of Rotation Measurements and Requirements for Recording Instruments
2.3 The Influence of Recording Error on the Computed Rotation Signal
2.4 Direct Detection of the Rotational Component
2.5 Conclusions

3 Buildings as Sources of Rotational Waves
Mihailo D. Trifunac

3.1 Introduction
3.2 Soil-Foundation Interaction – Near Field
3.3 Soil-Foundation Interaction – Far Field
3.4 Summary

4 Two-Pendulum Systems for Measuring Rotations
Vladimir Graizer

4.1 Introduction
5 Theory and Observations: Some Remarks on Rotational Motions

Roman Teisseyre

5.1 Ten Motions and Deformations

5.2 Recording Spin and Twist

5.3 Rotation Motions in the Universe

PART II
CONTINUUM WITH DEFECT DENSITIES AND ASYMMETRY OF FIELDS

6 Field Invariant Representation: Dirac Tensors

Jan Wiszniowski and Roman Teisseyre

6.1 Introduction

6.2 Axial and Deviatoric Parts of any Symmetric Tensor

6.3 Dirac Tensors

6.4 Motion Equations: Classical Elasticity

6.5 Diagonal and Off-Diagonal Symmetric Tensor Representation

6.6 Particular Cases

6.7 Conclusion

7 Asymmetric Continuum: Standard Theory

Roman Teisseyre

7.1 Introduction

7.2 Standard Asymmetric Theory: Basic Assumptions

7.3 Spin and Twist Motions

7.4 Defects: Dislocation and Disclination Densities

7.5 Balance Laws for the Rotation Field and the EM Analogy

Appendix: Continuum with Internal Nuclei

8 Fracture Processes: Spin and Twist-Shear Coincidence

Roman Teisseyre, Marek Górski, and Krzysztof P. Teisseyre
9 Inplane and Antiplane Fracturing in a Multimode Random Sequence

Wojciech Boratyński ... 123

9.1 Introduction ... 123
9.2 Standard Asymmetric Theory of Continuum 123
9.3 Dislocation Flow on Slip Plane ... 126
9.4 Numerical Simulation of Dislocation Flow Pattern 128
9.5 Discussion ... 136

10 Charged Dislocations and Various Sources of Electric Field Excitation

Krzysztof P. Teisseyre ... 137

10.1 Introduction ... 137
10.2 Effects of Varying and Transient Polarization Due to Mechanical Stimulation ... 139
10.3 Electrokinetics and the Properties of Water 144
10.4 Less-Known Mechanisms of Charge Separation 149
10.5 Pre-earthquake Stress Variations as the Source of Rotations and Electric Processes ... 155
10.6 Charge Separation and the Rise of Current 156
10.7 Large-Scale Electric Circuits .. 156
10.8 Final Remarks ... 158

11 Friction and Fracture Induced Anisotropy: Asymmetric Stresses

Roman Teisseyre .. 163

11.1 Introduction ... 163
11.2 2D Uniform Anisotropy .. 164
11.3 2D Fracture/Friction Induced Anisotropy 167
11.4 Conclusions ... 168

12 Asymmetric Fluid Dynamics: Extreme Phenomena

Roman Teisseyre .. 171

12.1 Introduction ... 171
12.2 Standard Asymmetric Fluid Theory 171
12.3 Conclusions ... 174

13 Fracture Band Thermodynamics

Roman Teisseyre .. 175

13.1 Introduction ... 175
13.2 Earthquake Dislocation Theory ... 176
13.3 Fracture Band Model .. 178
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.4</td>
<td>Earthquake Thermodynamics</td>
<td></td>
<td>179</td>
</tr>
<tr>
<td>13.5</td>
<td>Conclusions</td>
<td></td>
<td>184</td>
</tr>
<tr>
<td>14</td>
<td>Interaction Asymmetric Continuum Theory</td>
<td>Roman Teisseyre</td>
<td>187</td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td></td>
<td>187</td>
</tr>
<tr>
<td>14.2</td>
<td>Thermal Interaction Field</td>
<td></td>
<td>189</td>
</tr>
<tr>
<td>14.3</td>
<td>Dislocation Related Polarization: Polarization Gradient Theory</td>
<td></td>
<td>189</td>
</tr>
<tr>
<td>14.4</td>
<td>Conclusion</td>
<td></td>
<td>191</td>
</tr>
<tr>
<td>15</td>
<td>Fracture Physics Based on a Soliton Approach</td>
<td>Eugeniusz Majewski</td>
<td>193</td>
</tr>
<tr>
<td>15.1</td>
<td>Introduction</td>
<td></td>
<td>193</td>
</tr>
<tr>
<td>15.2</td>
<td>The Dilaton Mechanism</td>
<td></td>
<td>193</td>
</tr>
<tr>
<td>15.3</td>
<td>The Nonlinear Klein-Gordon Equation</td>
<td></td>
<td>194</td>
</tr>
<tr>
<td>15.4</td>
<td>Coupled Klein-Gordon Equations Applied to Modeling a Two-Layer Model</td>
<td></td>
<td>196</td>
</tr>
<tr>
<td>15.5</td>
<td>The Generalized Korteweg-de Vries (KdV) Equation</td>
<td></td>
<td>198</td>
</tr>
<tr>
<td>15.6</td>
<td>The Spin and Twist Strain Solitons</td>
<td></td>
<td>199</td>
</tr>
<tr>
<td>15.7</td>
<td>Splitting the Spin Strain Solitons Propagating along the Fracture Surface into the Fracture-Zone Related Part and the Elastic Part</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>15.8</td>
<td>The Sine-Gordon Model of Moving Dislocations</td>
<td></td>
<td>201</td>
</tr>
<tr>
<td>15.9</td>
<td>Soliton Ratchets</td>
<td></td>
<td>202</td>
</tr>
<tr>
<td>15.10</td>
<td>The Generalized Sine-Gordon Model of Rock Fracture</td>
<td></td>
<td>203</td>
</tr>
<tr>
<td>15.11</td>
<td>Links Between Solitons and Moving Cracks</td>
<td></td>
<td>204</td>
</tr>
<tr>
<td>15.12</td>
<td>Fracture Solitons in Polymer Chains</td>
<td></td>
<td>204</td>
</tr>
<tr>
<td>15.13</td>
<td>Chaos of Soliton Systems</td>
<td></td>
<td>204</td>
</tr>
<tr>
<td>15.14</td>
<td>The Soliton Complexes</td>
<td></td>
<td>204</td>
</tr>
<tr>
<td>15.15</td>
<td>The Soliton Arrays</td>
<td></td>
<td>205</td>
</tr>
<tr>
<td>15.16</td>
<td>Conclusions</td>
<td></td>
<td>206</td>
</tr>
<tr>
<td>16</td>
<td>Canonical Approach to Asymmetric Continua</td>
<td>Eugeniusz Majewski</td>
<td>209</td>
</tr>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td></td>
<td>209</td>
</tr>
<tr>
<td>16.2</td>
<td>Hamilton’s Principle</td>
<td></td>
<td>210</td>
</tr>
<tr>
<td>16.3</td>
<td>Action of Spin and Twist Fields</td>
<td></td>
<td>211</td>
</tr>
<tr>
<td>16.4</td>
<td>The Euler-Lagrange Equations</td>
<td></td>
<td>212</td>
</tr>
<tr>
<td>16.5</td>
<td>Additive Decomposition of the Lagrangian</td>
<td></td>
<td>214</td>
</tr>
<tr>
<td>16.6</td>
<td>The Canonical Equations (Hamilton’s Equations)</td>
<td></td>
<td>214</td>
</tr>
<tr>
<td>16.7</td>
<td>Conclusions</td>
<td></td>
<td>217</td>
</tr>
</tbody>
</table>
PART III
DEFORMATIONS IN RIEMANNIAN GEOMETRY219

17 Continuum Theory of Defects: Advanced Approaches
Hiroyuki Nagahama and Roman Teisseyre221
17.1 Geometry of Deformation ..221
17.2 Deformation Measures and Incompatibility225
17.3 Evolution Equations for Stresses and Dislocations228
17.4 Source/Sink Functions of Dislocation Density229
17.5 Virtual Tearing (Kondo 1964)231
17.6 High-Order Spaces and Non-Locality of Deformation ...233
17.7 Interaction Between Microscopic and Macroscopic
Fields: Comparison Between the Different Approaches ..235
17.8 Asymmetric and Anholonomic Deformation237
17.9 Micromorphic Continuum with Defects239
17.10 Taylor-Bishop-Hill Model240

18 Spinors and Torsion in a Riemann-Cartan Approach to
Elasticity with a Continuous Defect Distribution and
Analogies to the Einstein-Cartan Theory of Gravitation
Eugeniusz Majewski ...249
18.1 Introduction ..249
18.2 The Riemann-Cartan Geometry252
18.3 Spinors and Spin-Spaces ...254
18.4 Elastic Crystal with a Continuous Defect Distribution ...254
18.5 The Disclination-Curvature Analogy256
18.6 The Dislocation-Torsion Analogy257
18.7 The Rotational and Translational Strain Tensors257
18.8 Description of Moving Defects in 4D260
18.9 Rotational Metric ...260
18.10 Complex Vielbein, Rotational Field, and Metric261
18.11 Disclination Density and Current Tensor261
18.12 Dislocation Density and Current Tensor262
18.13 Additive Decomposition of the Total Strain Tensors ...263
18.14 The Einstein-Cartan Theory264
18.15 The Analogy Between the Disclination Density
Tensor and the Einstein Tensor265
18.16 The Evolution Equation for the Disclination Density266
18.17 The Evolution Equation for the Dislocation Density267
18.18 Spin Energy Potential ..267
18.19 Degenerate Asymmetric Continuum in Terms
of Spinors: Analogy to Maxwell’s Equations268
18.20 Conclusions ...268
19 Twistors as Spin and Twist Solitons

Eugeniusz Majewski ... 273

19.1 Introduction ... 273
19.2 The Twistor Equation.. 273
19.3 Twistor Definition... 274
19.4 Twistor Quantization Theory Applied to Spin and
 Twist Solitons.. 274
19.5 The Spin Operator ... 277
19.6 The Twist Operator .. 278
19.7 Spin and Twist Solitons Described by the Nonlinear
 Schrödinger Equation.. 278
19.8 The Fracture Solitons ... 281
19.9 The Robinson Congruences... 282
19.10 Conclusions ... 283

20 Potentials in Asymmetric Continuum: Approach to Complex Relativity

Roman Teisseyre ... 285

20.1 Introduction ... 285
20.2 Natural Potentials .. 286
20.3 Spin and Twist Fields in the Riemannian Space 288
20.4 Natural Potentials: Analogy to Electromagnetic Field 289
20.5 Complex Relativity Theory .. 290
20.6 Concluding Remarks ... 290
Physics of Asymmetric Continuum: Extreme and Fracture Processes
Earthquake Rotation and Soliton Waves
Teisseyre, R.; Nagahama, H.; Majewski, E. (Eds.)
2008, XVI, 293 p. 62 illus., Hardcover
ISBN: 978-3-540-68354-4