Contents

1 Concise Information About Single-Phase and Heterogeneous Turbulent Flows 1
 1.1 Preliminary Remarks 1
 1.2 Equations of Single-Phase Turbulent Flows 1
 1.2.1 Algebraic Models of Turbulence 4
 1.2.2 One-Parameter Models of Turbulence 6
 1.2.3 Two-Parameter Models of Turbulence 7
 1.3 Main Characteristics of Single-Phase Flows 9
 1.3.1 Distributions of Averaged Velocity 9
 1.3.2 Distributions of Averaged Fluctuation Velocities ... 11
 1.3.3 Turbulent Energy 12
 1.3.4 Energy Spectrum of Turbulence 13
 1.3.5 Correlations in Turbulent Flows 13
 1.3.6 Scales of Turbulent Flows 15
 1.4 Main Characteristics of Heterogeneous Flows 17
 1.4.1 Time of Dynamic Relaxation of Particles 17
 1.4.2 Time of Thermal Relaxation of Particles 18
 1.4.3 Stokes Numbers 18
 1.4.4 Particle Concentration 19
 1.5 Classification of Heterogeneous Turbulent Flows 22

2 Mathematical Simulation of Particle-Laden Gas Flows 27
 2.1 Preliminary Remarks 27
 2.2 Special Features of Simulation of Heterogeneous Flows
 of Different Types 28
 2.3 Description of Motion of Solid Particles Suspended
 in Turbulent Flow 30
 2.3.1 Lagrangian Approach 30
 2.3.2 Eulerian Continuum Approach 39
Contents

2.4 Description of Motion of Gas Carrying Solid Particles 42
2.4.1 Algebraic Models 45
2.4.2 One-Parameter Models 46
2.4.3 Two-Parameter Models 48
2.4.4 Methods of Direct Numerical Simulation 48

3 Physical Simulation of Particle-Laden Gas Flows 51
3.1 Preliminary Remarks 51
3.2 Laser Doppler Anemometry and its Advantages 52
3.3 Special Features and Objectives of Experimental Studies of Heterogeneous Flows 55
3.4 Special Features of Studies of the Behavior of Solid Particles 57
3.4.1 Optimization of LDA Parameters 58
3.4.2 Measurement of the Velocities of Polydisperse Particles 61
3.4.3 Monitoring of the Accuracy of the Results 67
3.4.4 Measurement of the Relative Concentration of Particles 68
3.5 Special Features of Studies of the Effect of Solid Particles on Gas Flow 75
3.5.1 Estimation of Cross-talk: Methods of Signal Selection 75
3.5.2 Estimation of the Efficiency of Amplitude Selection of Signals 78
3.6 Experimental Apparatuses 85
3.6.1 Experimental Setup for Studying Upward Flows of Gas Suspension 86
3.6.2 Experimental Setup for Studying Downward Flows of Gas Suspension 87
3.6.3 The Choice of Particle Characteristics: An Example 88

4 Particle-Laden Channel Flows 91
4.1 Preliminary Remarks 91
4.2 The Behavior of Solid Particles and Their Effect on Gas Flow 92
4.2.1 Averaged Velocities of Gas and Particles 92
4.2.2 Fluctuation Velocities of Gas and Particles 98
4.2.3 The Effect of Particles on the Energy Spectrum and Scales of Turbulence of Gas 107
4.2.4 Generalization of Data 111
4.3 Simulation of the Effect of Particles on Turbulent Energy
 of Gas ... 115
 4.3.1 The Dissipation of Turbulent Energy
 by Small Particles 116
 4.3.2 The Generation of Turbulent Energy
 by Large Particles 119
 4.3.3 The Effect of Particles on Turbulent Energy of Gas 121

5 Particle-Laden Flows Past Bodies 127
 5.1 Preliminary Remarks 127
 5.2 A Flow with Particles in the Region
 of the Critical Point of a Body 128
 5.2.1 Theoretical Investigations 129
 5.2.2 Experimental Investigations 138
 5.3 A Particle-Laden Flow in the Boundary Layer of a Body
 Subjected to Flow 150
 5.3.1 Theoretical Investigations 151
 5.3.2 Experimental Investigations 156
 5.4 The Body Drag in Particle-Laden Flows 165

Conclusions ... 169

References .. 173

Index .. 187
Turbulent Particle-Laden Gas Flows
Varaksin, A.Y.
2007, XVI, 194 p. 105 illus., Hardcover
ISBN: 978-3-540-68053-6