Contents

1 Concise Information About Single-Phase and Heterogeneous Turbulent Flows 1
 1.1 Preliminary Remarks .. 1
 1.2 Equations of Single-Phase Turbulent Flows 1
 1.2.1 Algebraic Models of Turbulence 4
 1.2.2 One-Parameter Models of Turbulence 6
 1.2.3 Two-Parameter Models of Turbulence 7
 1.3 Main Characteristics of Single-Phase Flows 9
 1.3.1 Distributions of Averaged Velocity 9
 1.3.2 Distributions of Averaged Fluctuation Velocities 11
 1.3.3 Turbulent Energy .. 12
 1.3.4 Energy Spectrum of Turbulence 13
 1.3.5 Correlations in Turbulent Flows 13
 1.3.6 Scales of Turbulent Flows 15
 1.4 Main Characteristics of Heterogeneous Flows 17
 1.4.1 Time of Dynamic Relaxation of Particles 17
 1.4.2 Time of Thermal Relaxation of Particles 18
 1.4.3 Stokes Numbers ... 18
 1.4.4 Particle Concentration 19
 1.5 Classification of Heterogeneous Turbulent Flows 22

2 Mathematical Simulation of Particle-Laden Gas Flows 27
 2.1 Preliminary Remarks .. 27
 2.2 Special Features of Simulation of Heterogeneous Flows of Different Types 28
 2.3 Description of Motion of Solid Particles Suspended in Turbulent Flow 30
 2.3.1 Lagrangian Approach 30
 2.3.2 Eulerian Continuum Approach 39
2.4 Description of Motion of Gas Carrying Solid Particles 42
 2.4.1 Algebraic Models ... 45
 2.4.2 One-Parameter Models 46
 2.4.3 Two-Parameter Models 48
 2.4.4 Methods of Direct Numerical Simulation 48

3 Physical Simulation of Particle-Laden Gas Flows 51
 3.1 Preliminary Remarks ... 51
 3.2 Laser Doppler Anemometry and its Advantages 52
 3.3 Special Features and Objectives of Experimental Studies of Heterogeneous Flows .. 55
 3.4 Special Features of Studies of the Behavior of Solid Particles .. 57
 3.4.1 Optimization of LDA Parameters 58
 3.4.2 Measurement of the Velocities of Polydisperse Particles .. 61
 3.4.3 Monitoring of the Accuracy of the Results 67
 3.4.4 Measurement of the Relative Concentration of Particles .. 68
 3.5 Special Features of Studies of the Effect of Solid Particles on Gas Flow .. 75
 3.5.1 Estimation of Cross-talk: Methods of Signal Selection .. 75
 3.5.2 Estimation of the Efficiency of Amplitude Selection of Signals .. 78
 3.6 Experimental Apparatuses .. 85
 3.6.1 Experimental Setup for Studying Upward Flows of Gas Suspension .. 86
 3.6.2 Experimental Setup for Studying Downward Flows of Gas Suspension .. 87
 3.6.3 The Choice of Particle Characteristics: An Example ... 88

4 Particle-Laden Channel Flows 91
 4.1 Preliminary Remarks ... 91
 4.2 The Behavior of Solid Particles and Their Effect on Gas Flow .. 92
 4.2.1 Averaged Velocities of Gas and Particles 92
 4.2.2 Fluctuation Velocities of Gas and Particles 98
 4.2.3 The Effect of Particles on the Energy Spectrum and Scales of Turbulence of Gas 107
 4.2.4 Generalization of Data 111
4.3 Simulation of the Effect of Particles on Turbulent Energy of Gas ... 115
 4.3.1 The Dissipation of Turbulent Energy by Small Particles .. 116
 4.3.2 The Generation of Turbulent Energy by Large Particles ... 119
 4.3.3 The Effect of Particles on Turbulent Energy of Gas .. 121

5 Particle-Laden Flows Past Bodies ... 127
 5.1 Preliminary Remarks ... 127
 5.2 A Flow with Particles in the Region of the Critical Point of a Body 128
 5.2.1 Theoretical Investigations .. 129
 5.2.2 Experimental Investigations .. 138
 5.3 A Particle-Laden Flow in the Boundary Layer of a Body Subjected to Flow 150
 5.3.1 Theoretical Investigations .. 151
 5.3.2 Experimental Investigations .. 156
 5.4 The Body Drag in Particle-Laden Flows .. 165

Conclusions ... 169

References ... 173

Index .. 187
Turbulent Particle-Laden Gas Flows
Varaksin, A.Y.
2007, XVI, 194 p. 105 illus., Hardcover
ISBN: 978-3-540-68053-6