Contents

1. Introduction .. 1
 1.1 Historical Remarks 1
 1.2 Surface Space-Charge and Surface States:
 Some Preliminary Remarks 13

2. Surface Space-Charge Region in Thermal Equilibrium 21
 2.1 Solutions of Poisson’s Equation 21
 2.2 Surface Space-Charge 25
 2.3 Shape of Surface Barriers 27
 2.4 Comparison of Space-Charge Layers
 at Semiconductor and Metal Surfaces 28
 2.5 Quantum Size-Effects in Space-Charge Layers 28

3. Surface States ... 33
 3.1 Virtual Gap States of the Complex Band Structure 33
 3.2 Intrinsic Surface States: Nearly Free Electron Model .. 36
 3.3 Intrinsic Surface States: Tight-Binding Approximation ... 44
 3.4 Dangling Bonds 47
 3.5 Adatom-Induced Surface States: Tight-Binding Approach ... 51
 3.6 Adatom-Induced Surface Dipoles: Electronegativity Concept . 53
 3.7 Adatom-Induced Surface States and Dipoles: ViGS Model ... 56

4. Occupation of Surface States and Surface Band-Bending
 in Thermal Equilibrium 59

5. Surface Space-Charge Region in Non-Equilibrium 67
 5.1 Surface Photovoltage 67
 5.2 Dember Effect 73
 5.3 Surface Transport 74
 5.3.1 Surface Excess of Carriers 74
 5.3.2 Surface Conductance 76
 5.3.3 Surface Mobility 76
 5.3.4 Field Effect of Surface Conductance 78
6. Interface States .. 81
 6.1 Metal–Semiconductor Contacts: Metal–Induced Gap States .. 81
 6.2 MIGS-and-Electronegativity Model
 of Metal–Semiconductor Contacts 86
 6.3 Slope Parameters of Barrier Heights in Schottky Contacts .. 91
 6.4 Defects at Metal–Semiconductor Interfaces 93
 6.5 Band Lineup in Semiconductor Heterostructures:
 IFIGS-and-Electronegativity Model 96
 6.6 Band Lineup at Semiconductor Heterostructures:
 Tight-Binding Approach .. 98
 6.7 Historical Notes ... 100

7. Cleaved {110} Surfaces of III-V
 and II-VI Compound Semiconductors 105
 7.1 Ionicity and Core-Level Spectroscopy
 of Compound Semiconductors 105
 7.1.1 Layer Model of Photoemitted Electrons 105
 7.1.2 Charge Transfer in the Bulk
 of Compound Semiconductors 109
 7.2 Surface Core-Level Shifts 112
 7.3 Geometrical Surface Structure 114
 7.4 Surface Phonons ... 122
 7.5 Electronic Surface States 128
 7.5.1 Intrinsic Versus Extrinsic Surface States 128
 7.5.2 Cleavage-Induced Surface States:
 InAs(110) as an Example 131
 7.5.3 Intrinsic Surface States 133
 7.6 Temperature Dependence of the Ionization Energy 137
 7.7 Chemical Trends of the Ionization Energy 140

8. {100} Surfaces of III-V, II-VI,
 and I-VII Compound Semiconductors
 with Zincblende Structure 145
 8.1 Reconstructions and Trends in Chemical Compositions 145
 8.2 Dimerization ... 150
 8.3 Missing Dimer Structures 153
 8.4 Dimerization, Occupation of Dangling Bonds,
 and Electron Counting 161
 8.5 Intrinsic Surface Band Structure 166
 8.6 Fermi-Level Pinning by Extrinsic Surface States 167
 8.7 Ionization Energy .. 168

9. {100} Surfaces of Diamond, Silicon, Germanium,
 and Cubic Silicon Carbide 169
 9.1 Atomic Arrangement ... 169
9.2 Strain Effects on Si(001) Surfaces ... 175
9.3 Electronic Surface Properties .. 177
9.4 Surface Core-Level Shifts ... 181
9.5 Reversible $2 \times 1 \rightleftharpoons c(4 \times 2)$ Surface Phase Transition 183
9.6 β-SiC(001) Surfaces .. 186

10. Diamond, Silicon, and Germanium
\{111\}-2 \times 1 Surfaces .. 193
10.1 Cleaved Silicon and Germanium Surfaces 194
 10.1.1 Early Models of (111)-2 \times 1 Reconstructions
 and Core-Level Shifts .. 194
 10.1.2 Band Structure of Dangling-Bond Surface States:
 Experimental Data .. 197
 10.1.3 Surface Band Gap .. 202
 10.1.4 Tilted Chains ... 206
 10.1.5 Band Structure of Dangling-Bond Surface States:
 Theoretical Results ... 213
10.2 Clean Diamond \{111\} Surfaces .. 213
 10.2.1 Atomic Arrangement ... 213
 10.2.2 Electronic Properties .. 215
10.3 Clean Diamond and Cleaved Silicon
 and Germanium \{111\} Surfaces in Comparison 217

11. Si(111)-7 \times 7 and Ge(111)-c(2 \times 8) Surfaces 219
11.1 Preparation of Clean Si(111)-7 \times 7
 and Ge(111)-c(2 \times 8) Surfaces 219
11.2 Si(111)-7 \times 7: Atomic Arrangement 221
 11.2.1 Elements of the 7 \times 7 Reconstruction
 on Si(111) Surfaces .. 221
 11.2.2 Dimer-Adatom-Stacking Fault Model 225
11.3 Ge(111)-c(2 \times 8): Atomic Arrangement 229
11.4 Electronic Structure of Si(111)-7 \times 7
 and Ge(111)-c(2 \times 8) Surfaces 232
 11.4.1 Electronic Band Structure 232
 11.4.2 Core-Level Spectroscopy 234
11.5 Energetics of Reconstructions on \{111\} Surfaces
 of Si and Ge: 7 \times 7 Versus c(2 \times 8) 237

12. Phase Transitions on Silicon and Germanium
\{111\} Surfaces .. 241
12.1 Si(111)-7 \times 7 \Rightarrow “1 \times 1”
 and Ge(111)-c(2 \times 8) \Rightarrow “1 \times 1” Phase Transitions 241
12.2 Ge(111)-“1 \times 1” High-Temperature Phase Transition 246
12.3 Irreversible Conversion of 2 \times 1 Reconstructions
 on Cleaved Si and Ge Surfaces 247
13. \{111\} Surfaces of Compounds with Zincblende Structure . 255
13.1 [111]-Oriented Surfaces ... 255
13.2 [\overline{111}]-Oriented Surfaces 257

14. Monovalent Adatoms ... 263
14.1 Adsorption of Halogens ... 263
14.1.1 Dissociative Adsorption 263
14.1.2 Bond Lengths and Adsorption Sites 269
14.2 Adsorption of Hydrogen ... 272
14.2.1 Si(001):H-Surfaces .. 272
14.2.2 Si(111):H-\(\delta(7 \times 7)\) Surfaces 275
14.2.3 Si(111)- and Ge(111):H-1 \times 1 Surfaces 276
14.3 Alkali and Silver Adatoms on Si\{100\} Surfaces 280
14.4 Monovalent Metal Adatoms on Si and Ge \{111\} Surfaces .. 283
14.4.1 Alkali Adatoms on Si\{111\}-7 \times 7 Surfaces 283
14.4.2 Si(111):Ag- and Ge(111):Ag-(\(\sqrt{3} \times \sqrt{3}\))R30° Structures .. 284
14.4.3 Si(111):Au- and Ge(111):Au-(\(\sqrt{3} \times \sqrt{3}\))R30° Structures .. 287
14.4.4 \(3 \times 1\) Reconstructions Induced by Alkali and Silver Adatoms on Si \{111\} Surfaces 288
14.5 Growth Kinetics of Metals on Cleaved GaAs\{110\} Surfaces ... 291
14.6 Adatom-Induced Surface Core-Level Shifts 300
14.7 Adatom-Induced Surface Dipoles 307
14.7.1 Mutual Interactions in Plane Arrays of Surface Dipoles .. 307
14.7.2 Surface Dipoles Induced by Alkali Adatoms 309
14.7.3 Hydrogen-Induced Surface Dipoles 311
14.8 Adatom-Induced Surface States 316
14.8.1 Cesium Adatoms on Cleaved Si Surfaces 316
14.8.2 Metal Adatoms on GaAs\{110\} Surfaces 317
14.8.3 Nonmetal Adatoms on GaAs\{110\} Surfaces 324

15. Group-III Adatoms on Silicon Surfaces 329
15.1 Si\{111\}:\text{III-(}\sqrt{3} \times \sqrt{3})\text{R}30°\) Reconstructions .. 329
15.1.1 Al-, Ga-, and In-Induced \((\sqrt{3} \times \sqrt{3})\text{R}30°\) Reconstructions .. 330
15.1.2 B-Induced \((\sqrt{3} \times \sqrt{3})\text{R}30°\) Reconstruction .. 333
15.2 Reconstructions Induced by Group-III Adatoms on \{100\} Surfaces of Si and Ge 334

16.1 Si\{111\}:\text{As-}1 \times 1 and Si\{001\}:As- and Si\{001\}:Sb-2 \times 1 Surfaces .. 339
Contents XV

16.2 Sb- and Bi-induced (√3 × √3)R30° Structures on Si and Ge(111) Surfaces 343
16.3 GaP-, GaAs-, and InP(110):Sb-1 × 1 Surfaces 347
16.4 III-V(110):Bi-1 × 1 Surfaces .. 350

17. Oxidation of Silicon and III-V Compound Semiconductors ... 353
17.1 Si(111) Surfaces .. 353
 17.1.1 Precursor-Mediated Chemisorption on Si(111)-7 × 7 Surfaces 354
 17.1.2 Oxygen-Induced Si(2p) Core-Level Shifts 361
 17.1.3 Field-Assisted Oxidation .. 364
17.2 III-V Compound Semiconductors .. 366
 17.2.1 Oxidation Kinetics on GaAs(110) Surfaces 367
 17.2.2 Photon-Stimulated Oxidation .. 371
 17.2.3 Core-Level Spectroscopy: Growth Mode and Composition of Oxide Films 372

18. Surface Passivation by Adsorbates and Surfactants 377
18.1 Surface Passivation by Hydrogen 377
18.2 Surfactant-Mediated Growth .. 381

19. Semiconductor Interfaces .. 385
19.1 Metal–Semiconductor Contacts 386
 19.1.1 Current Transport Across Metal–Semiconductor Contacts 386
 19.1.2 Image-Force Effect .. 388
 19.1.3 Determination of Barrier Heights: A Brief Comparison of Methods 389
 19.1.4 Barrier Heights of Real Schottky Contacts 392
 19.1.5 Laterally Inhomogeneous Schottky Contacts 1: Circular Patches 400
 19.1.6 Laterally Inhomogeneous Schottky Contacts 2: BEEM 402
 19.1.7 Laterally Inhomogeneous Schottky Contacts 3: I/V Characteristics 402
 19.1.8 The MIGS-and-Electron negativity Concept: Experiment and Theory 407
 19.1.9 Direct Observations of MIGS 418
 19.1.10 Extrinsic Interface Dipoles 1: Interface Doping 420
 19.1.11 Extrinsic Interface Dipoles 2: Metal/Si(111)-(7 × 7)i Contacts 424
 19.1.12 Extrinsic Interface Dipoles 3: Epitaxial Silicide/Silicon Interfaces 427
XVI Contents

19.1.13 Origin of Lateral Barrier-Height Inhomogeneities 1:
 Natural Nonuniformities 434
19.1.14 Origin of Lateral Barrier-Height Inhomogeneities 2:
 Extrinsic Nonuniformities 435
19.1.15 Slope Parameter 437
19.1.16 Schottky Contacts on Ternary III-V Alloys 439
19.1.17 Temperature and High-Pressure Effects 444
19.1.18 Ohmic Contacts 451
19.2 Semiconductor Heterostructures 455
 19.2.1 Band-Structure Lineup 455
 19.2.2 Interface Dipoles at Polar Interfaces 457
 19.2.3 Lattice-Matched Ternary and Quaternary III-V Alloys 461
 19.2.4 Pressure and Temperature Dependence
 of Valence-Band Offsets 467
 19.2.5 Pseudomorphic Interfaces 468
 19.2.6 Metamorphic Heterostructures 471
19.3 Layered Semiconductors 472
19.4 Insulator Interfaces 476
 19.4.1 Metal–Insulator Contacts 476
 19.4.2 Semiconductor–Insulator Interfaces 479

Appendix .. 483

References .. 487

Index of Reconstructions and Adsorbates 535

Subject Index ... 539
Semiconductor Surfaces and Interfaces
Mönch, W.
2001, XVI, 548 p., Hardcover
ISBN: 978-3-540-67902-8