Contents

1. Introduction .. 1
 1.1 The History of Filters in Telecommunication 1
 1.2 Filters for Wireless Communication 3
 1.3 Classification of Resonators and Filters
 for Wireless Communication 5
 1.4 Transmission-Line Resonators and Stepped
 Impedance Resonator (SIR) 7

2. Basic Structure and Characteristics of SIR 11
 2.1 Basic Structure of SIR 11
 2.2 Resonance Conditions and Resonator Electrical Length 12
 2.3 Spurious Resonance Frequencies 16
 2.4 Derivation of an Equivalent Circuit of SIR 16

3. Quarter-Wavelength-Type SIR 19
 3.1 Analysis of $\lambda_g/4$-Type Coaxial SIR 20
 3.1.1 Impedance Ratio R_g 20
 3.1.2 Effects of Discontinuity 21
 3.1.3 Unloaded-Q of Coaxial SIR 24
 3.2 Bandpass Filters Using Coaxial SIR 30
 3.2.1 Synthesis Method of SIR-BPF
 Using Capacitive Coupling 30
 3.2.2 Design Examples and Performances 32
 3.3 Double Coaxial SIR (DC-SIR) 39
 3.3.1 Advantages of DC-SIR 39
 3.3.2 Resonance Condition and Unloaded-Q 39
 3.3.3 400MHz-Band High-Power Antenna Duplexer 41
 3.4 Dielectric Coaxial SIR 45
 3.4.1 Dielectric Materials
 and Features of Dielectric Resonators 45
 3.4.2 Basic Structure and Characteristics
 of Dielectric Coaxial Resonator 47
 3.4.3 Design Example of Antenna Duplexer
 for Portable Radio Telephone 50
 3.4.4 Dielectric DC-SIR 53
 3.4.5 Dielectric Monoblock SIR-BPF 58
3.5 Stripline SIR ... 60
 3.5.1 Basic Structures and Features 60
 3.5.2 Coupling Between Resonators 61
 3.5.3 Stripline SIR-BPF 62

4. Half-Wavelength-Type SIR ... 65
 4.1 Stripline $\lambda_g/2$ Type SIR 66
 4.1.1 Basic Characteristics 66
 4.1.2 Equivalent Expressions for Parallel Coupled-Lines
 Using Inverter 67
 4.1.3 Synthesis of Stripline Parallel-Coupled SIR-BPF 71
 4.1.4 Filter Design Examples 74
 4.2 Internally Coupled SIR 84
 4.2.1 Basic Structures and Resonance Condition 84
 4.2.2 Equivalent Circuits at Resonance 89
 4.2.3 Filter Design Examples 91
 4.2.4 Application to Oscillator and Mixer Circuits 101

5. One-Wavelength-Type SIR .. 107
 5.1 Orthogonal Resonance Modes in the Ring Resonator 107
 5.2 Application of λ_g-Type SIR as Four-Port Devices 109
 5.3 Application of λ_g-Type SIR as Two-Port Devices 112
 5.3.1 Coupling Means for Orthogonal Resonant Modes ... 112
 5.3.2 Analysis of Coupling
 Between Orthogonal Resonant Modes 115
 5.3.3 Application to Filters 119

6. Expanded Concept
 and Technological Trends in SIR 127
 6.1 SIR Composed of Composite Materials 127
 6.1.1 Combination of Magnetic and Dielectric Materials ... 127
 6.1.2 Coaxial SIR Partially Loaded with Dielectric Material 128
 6.2 Multistep SIR and Tapered-Line Resonators 131
 6.3 Folded-Line SIR .. 139
 6.4 Technological Trends of SIR in the Future 145

Appendix. Analysis of Resonator Properties
Using General-Purpose Microwave Simulator 149
 A.1 Design Parameters of Direct-Coupled Resonator BPF 149
 A.2 Filter Design by Experimental Method 150
 A.3 Determination of Q and k
 Using General Purpose Microwave Simulator 151
 A.3.1 Determination of Q 151
 A.3.2 Determination of Coupling Coefficient 154

References .. 157
Index .. 161
Microwave Resonators and Filters for Wireless Communication
Theory, Design and Application
Makimoto, M.; Yamashita, S.
2001, X, 162 p., Hardcover
ISBN: 978-3-540-67535-8