Inhaltsverzeichnis

Teil B

Aerodynamik des Tragflügels (Teil II)

VII. Tragflügel endlicher Spannweite bei inkompressibler Strömung

7.1 Grundzüge der Prandtlschen Tragflügeltheorie 1
 7.11 Wirbelsystem des Tragflügels endlicher Spannweite 1
 7.12 Auftrieb und induzierter Widerstand 2
 7.13 Prandtlsche Integralgleichung für die Zirkulationsverteilung 7
 7.14 Elliptische Zirkulationsverteilung 9
 7.15 Prandtlsche Umrechnungsformeln für den Tragflügel endlicher Spannweite ... 13

7.2 Tragflügeltheorie nach der Methode der Wirbelbelegung 16
 7.21 Wirbelsystem der tragenden Fläche 16
 7.22 Integralgleichung für die Zirkulationsverteilung nach der Tragflächentheorie .. 19
 7.23 Integralgleichung für die Zirkulationsverteilung nach der erweiterten Traglinientheorie ... 23
 7.24 Potential der tragenden Fläche ... 25
 7.241 Geschwindigkeitspotential .. 25
 7.242 Beschleunigungspotential .. 27

7.3 Berechnung des Auftriebes von Tragflügeln 28
 7.31 Überblick ... 28
 7.32 Berechnung des Gesamtauftriebes .. 29
 7.33 Einfache Traglinientheorie .. 33
 7.331 Grundgleichung .. 33
 7.332 Lösung durch Fourier-Polynome 35
 7.333 Tragflügel mit elliptischem Grundriß 37
 7.334 Quadraturverfahren von MULTHOPP 39
 7.335 Ringflügel .. 48
 7.34 Erweiterte Traglinientheorie .. 49
 7.341 Verfahren von WEISSINGER .. 49
 7.342 Flügel mit elliptischem Grundriß 55
 7.343 Übergang von der erweiterten zur einfachen Traglinientheorie ... 57

7.35 Tragflächentheorie ... 58
 7.351 Allgemeiner Lösungsansatz ... 58
 7.352 Verfahren von MULTHOPP und TRUCKENBRODT 61
 7.353 Beispiele und Vergleich mit Messungen 64

7.36 Nichtlineare Tragflügeltheorie .. 72
<table>
<thead>
<tr>
<th>7.4 Berechnung des induzierten Widerstandes von Tragflügeln</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.41 Allgemeines</td>
<td>75</td>
</tr>
<tr>
<td>7.42 Berechnung des induzierten Widerstandes</td>
<td>76</td>
</tr>
<tr>
<td>7.421 Anwendung des Kutta-Joukowskyschen Satzes</td>
<td>76</td>
</tr>
<tr>
<td>7.422 Anwendung des Energiesatzes</td>
<td>78</td>
</tr>
<tr>
<td>7.423 Vereinfachte Betrachtung</td>
<td>80</td>
</tr>
<tr>
<td>7.43 Beispiele zum induzierten Widerstand</td>
<td>82</td>
</tr>
<tr>
<td>7.44 Tangentialkraft und Saugkraft</td>
<td>84</td>
</tr>
<tr>
<td>7.441 Tangentialkraft</td>
<td>84</td>
</tr>
<tr>
<td>7.442 Saugkraft</td>
<td>85</td>
</tr>
<tr>
<td>7.5 Flugmechanische Beiwerte des Tragflügels</td>
<td>88</td>
</tr>
<tr>
<td>7.51 Überblick</td>
<td>88</td>
</tr>
<tr>
<td>7.52 Stabilitätsbeiwerte der Längsbewegung</td>
<td>89</td>
</tr>
<tr>
<td>7.521 Geradeausflug</td>
<td>89</td>
</tr>
<tr>
<td>7.522 Nickbewegung</td>
<td>90</td>
</tr>
<tr>
<td>7.53 Stabilitätsbeiwerte der Seitenbewegung</td>
<td>94</td>
</tr>
<tr>
<td>7.531 Schiebeflug</td>
<td>94</td>
</tr>
<tr>
<td>7.532 Rollbewegung</td>
<td>105</td>
</tr>
<tr>
<td>7.533 Gierbewegung</td>
<td>108</td>
</tr>
<tr>
<td>7.6 Flügel endlicher Dicke bei Nullauftrieb</td>
<td>111</td>
</tr>
<tr>
<td>7.61 Überblick</td>
<td>111</td>
</tr>
<tr>
<td>7.62 Methode der Quell-Senkenbelegung</td>
<td>112</td>
</tr>
<tr>
<td>7.63 Beispiele</td>
<td>115</td>
</tr>
<tr>
<td>7.631 Rechteckflügel endlicher Spannweite</td>
<td>115</td>
</tr>
<tr>
<td>7.632 Ellipsenflügel</td>
<td>117</td>
</tr>
<tr>
<td>7.633 Gepfeilter Flügel</td>
<td>119</td>
</tr>
<tr>
<td>7.7 Maximalauftrieb von Tragflügeln</td>
<td>122</td>
</tr>
<tr>
<td>Literatur</td>
<td>128</td>
</tr>
</tbody>
</table>

VIII. Tragflügel bei kompressibler Strömung

8.1 Tragflügel unendlicher Spannweite bei kompressibler Strömung (Profiltheorie)	133
8.11 Allgemeines	133
8.12 Profiltheorie bei Unterschallgeschwindigkeit	133
8.121 Lineare Theorie bei Unterschallgeschwindigkeit (Prandtl-Glauertische Regel)	133
8.122 Höhere Näherungen bei Unterschallgeschwindigkeit (v. KÁRMÁN-TSIE N, KRAHN)	140
8.123 Reibungseinfluß	144
8.13 Profiltheorie bei Überschallgeschwindigkeit	145
8.131 Lineare Theorie bei Überschallgeschwindigkeit (ACKERET)	145
8.132 Höhere Näherungen bei Überschallgeschwindigkeit (BUSEMANN)	153

8.2 Räumliche Tragflügeltheorie bei kompressibler Strömung | 155 |
8.21 Geschwindigkeitspotential	155
8.211 Allgemeine Potentialgleichung	155
8.212 Linearisierung der Potentialgleichung	156
8.22 Ähnlichkeitsregeln für Unterschall- und Überschallanströmung (Prandtl, Glauber, Ackerman) 159
8.23 Ähnlichkeitsregel für Schallanströmung (v. Kármán) 166

8.3 Tragflügel endlicher Spannweite bei Unterschallgeschwindigkeit 169
8.31 Rechenverfahren ... 169
8.32 Angestellter Tragflügel endlicher Spannweite (Auftriebsproblem) 171
 8.321 Allgemeine Formeln 171
 8.322 Beispiele .. 173
8.33 Tragflügel endlicher Spannweite bei Nullauftrieb 178
 8.331 Allgemeine Formeln 178
 8.332 Pfeilflügel ... 180

8.4 Tragflügel endlicher Spannweite bei Überschallgeschwindigkeit 186
8.41 Grundlagen .. 186
 8.411 Grundbegriffe .. 186
 8.412 Kegelsymmetrische Überschallanströmung 191
 8.413 Grundlösungen der kegelsymmetrischen Überschallströmung 193
 8.414 Uberlagerungsprinzip 201
 8.415 Singularitätenmethode für Überschallströmung 203
8.42 Angestellter Tragflügel endlicher Spannweite 208
 8.421 Allgemeines .. 208
 8.422 Rechteckflügel ... 208
 8.423 Dreieckflügel ... 211
 8.424 Beliebiger Flügel .. 221
8.43 Tragflügel endlicher Spannweite bei Nullauftrieb 229
 8.431 Allgemeines .. 229
 8.432 Rechteckflügel bei Nullauftrieb 230
 8.433 Dreieckflügel bei Nullauftrieb 231
 8.434 Weitere Beispiele .. 232

8.5 Tragflügel endlicher Spannweite bei Schallgeschwindigkeit............. 235

Literatur ... 239

Teil C

Aerodynamik des Rumpfes und der Leitwerke

IX. Aerodynamik des Rumpfes

9.1 Einführung in die Aerodynamik des Rumpfes 244
 9.11 Geometrie des Rumpfes 244
 9.12 Kräfte und Momente am Rumpf 248
9.2 Rumpf bei inkompressibler Strömung 249
 9.21 Allgemeines .. 249
 9.22 Rumpf bei axialem Anströmung 250
 9.221 Druckverteilung nach der Methode der Quell-Senkenbelegung 250
9.222 Exakte Lösungen 257
9.223 Einfluß der Reibung 258
9.23 Rumpf bei unsymmetrischer Anströmung 259
9.231 Allgemeines 259
9.232 Rumpfmoment nach der Impulsmethode von MUNK 260
9.233 Druckverteilung nach der Methode der Dipolbelegung 262
9.234 Exakte Lösungen 268
9.235 Einfluß der Reibung 269

9.3 Grundlagen der Rumpftheorie bei kompressibler Strömung 271
9.31 Geschwindigkeitspotential 271
9.32 Ähnlichkeitsregeln für Unterschall- und Überschallanströmung 273
9.33 Ähnlichkeitsregel für Schallanströmung 275

9.4 Rumpf bei Unterschallgeschwindigkeit 277
9.41 Rechenverfahren 277
9.42 Rumpf bei axialer Anströmung 278
9.43 Rumpf bei unsymmetrischer Anströmung 280

9.5 Rumpf bei Überschallgeschwindigkeit 281
9.51 Grundlagen 281
9.52 Rumpf bei axialer Anströmung 282
9.521 Druckverteilung 282
9.522 Wellenwiderstand 288
9.53 Rumpf bei unsymmetrischer Anströmung 294

Literatur 297

X. Aerodynamik der Flügel-Rumpf-Anordnung

10.1 Einführung in die Aerodynamik der Flügel-Rumpf-Anordnung 300
10.11 Allgemeines über die gegenseitige Beeinflussung der Flugzeugteile 300
10.12 Geometrie der Flügel-Rumpf-Anordnung und aerodynamische Beiwerte 303
10.13 Strömungsmechanische Grundlagen zur Flügel-Rumpf-Interferenz 305

10.2 Flügel-Rumpf-Anordnung bei inkompressibler Strömung 309
10.21 Flügel-Rumpf-Anordnung bei symmetrischer Anströmung 309
10.211 Gesamtauftrieb einer Flügel-Rumpf-Anordnung 309
10.212 Auftriebsverteilung des Rumpfes 312
10.213 Auftriebsverteilung des Flügels 322
10.214 Neutralpunktlage von Flügel-Rumpf-Anordnungen 325
10.215 Widerstand und Maximalauftrieb von Flügel-Rumpf-Anordnungen 329
10.22 Flügel-Rumpf-Anordnung bei unsymmetrischer Anströmung 332
10.221 Schieberollmoment von Flügel-Rumpf-Anordnungen 332
10.222 Schiebergiermoment und Schiebeseitenkraft von Flügel-Rumpf-Anordnungen 338

10.3 Flügel-Rumpf-Anordnung bei Unterschallgeschwindigkeit 340
10.4 Flügel-Rumpf-Anordnung bei Überschallgeschwindigkeit 342
10.41 Allgemeines 342
10.42 Auftriebsverteilung des Rumpfes ... 344
10.43 Auftriebsverteilung des Flügels ... 350
10.5 Flügel-Rumpf-Anordnung bei transsonischer Strömung 354
10.6 Schlanke Flugkörper ... 357
Literatur ... 368

XI. Aerodynamik der Leitwerke

11.1 Einführung in die Aerodynamik der Leitwerke 372
11.11 Aufgabe der Leitwerke .. 372
11.12 Geometrie der Leitwerke ... 374

11.2 Aerodynamik des Höhenleitwerkes .. 377
11.21 Beitrag des Höhenleitwerkes zur Luftkraft des ganzen Flugzeuges 377
11.211 Flugzeug im Geradeausflug .. 377
11.212 Flugzeug bei Nickbewegung ... 383
11.22 Höhenleitwerk bei incompressibler Strömung 384
11.221 Unbeeinflußtes Höhenleitwerk ... 384
11.222 Einfluß des Rumpfes auf das Höhenleitwerk 386
11.223 Einfluß des Flügels auf das Höhenleitwerk 388
11.224 Stabilisierung durch das Höhenleitwerk (Neutralpunkt-
verschiebung) .. 402
11.23 Höhenleitwerk bei Unterschallgeschwindigkeit 404
11.24 Höhenleitwerk bei Überschallgeschwindigkeit 408
11.241 Grundsätzliches ... 408
11.242 Unbeeinflußtes Höhenleitwerk bei Überschallgeschwindigkeit 411
11.243 Einfluß des Flügels auf das Höhenleitwerk bei Überschall-
geschwindigkeit .. 411

11.3 Aerodynamik des Seitenleitwerkes ... 418
11.31 Beitrag des Seitenleitwerkes zur Luftkraft des ganzen Flugzeuges 418
11.32 Unbeeinflußtes Seitenleitwerk .. 421
11.33 Einfluß der Flügel-Rumpf-Anordnung auf das Seitenleitwerk 423

Literatur ... 431

XII. Aerodynamik der Ruder und Klappen

12.1 Einführung in die Aerodynamik der Ruder und Klappen 434
12.11 Aufgabe der Ruder und Klappen ... 434
12.12 Geometrische Daten und aerodynamische Beiwerte der Ruder 437

12.2 Klappenflügel unendlicher Spannweite 440
12.21 Klappenflügel bei incompressibler Strömung 440
12.22 Klappenflügel bei kompressibler Strömung 446

12.3 Ruder am Flügel endlicher Spannweite 448
12.31 Ruder am Flügel bei incompressibler Strömung 448
12.311 Berechnungsverfahren .. 448
12.312 Ergebnisse .. 450
12.32 Ruder am Flügel bei kompressibler Strömung 455
Inhaltsverzeichnis

12.4 Ruder am Leitwerk .. 462
12.5 Start- und Landehilfen 463
Literatur .. 476

Bibliographie .. 480

Anhang: Ausgeführte Flugzeuge, Entwurfsaerodynamik 486
Literatur (Anhang) .. 504

Namensverzeichnis .. 505
Sachverzeichnis ... 510
Aerodynamik des Flugzeuges
Zweiter Band: Aerodynamik des Tragflügels (Teil II), des Rumpfes, der Flügel-Rumpf-Anordnung und der Leitwerke
Schlichting, H.; Truckenbrodt, E.A.
2001, XVI, 514 S., Hardcover
ISBN: 978-3-540-67375-0