Contents

1. Necessity for a Science of Complex Systems 1
 1.1 Introduction 1
 1.2 Chaos ... 4
 1.3 Chaos and Complexity 8
 1.4 How Has Chaos Changed Our Way of Thinking? 11
 1.4.1 Dialectic Method to Overcome the Antithesis
 Between Determinism and Nondeterminism
 or Between Programs and Errors 11
 1.4.2 Dialectic Method to Overcome the Antithesis
 Between Order and Randomness 12
 1.4.3 Beyond the Antithesis Between Reductionism
 and Holism ... 12
 1.5 Dynamic Many-to-Many Relations and Bio-networks 13
 1.5.1 The Necessity of Dynamic Many-to-Many Relations .. 13
 1.5.2 Metabolic Systems, Differentiation, and Development . 15
 1.5.3 Ecosystems 16
 1.5.4 Immune Systems 17
 1.5.5 The Brain 18
 1.5.6 Rugged Landscapes and Their Problems 18
 1.5.7 Conclusion 20
 1.6 The Construction of an Artificial (Virtual) World 21
 1.7 A Trigger to Emergence 24
 1.8 Beyond Top-Down Versus Bottom-Up 26
 1.9 Methodology of Study of Complex Systems 28
 1.9.1 Constructive Way of Understanding 29
 1.9.2 Plural Views 30
 1.9.3 Mathematical Anatomy 31
 1.9.4 The Problem of Internal Observers 31

2. Observation Problems
 from an Information-Theoretical Viewpoint 33
 2.1 Observation Problems of Chaos 33
 2.2 Undecidability and Entire Description 37
Contents

2.3 A Demon in Chaos 38
2.4 Chaos in the BZ Reaction 39
2.5 Noise-Induced Order 43
2.6 Could Structural Stability Lead to an Adequate Notion of a Model? 47
2.7 Information Theory of Chaos 50

3. CMLs: Constructive Approach to Spatiotemporal Chaos 57
3.1 From a Descriptive to a Constructive Approach of Nature 57
3.2 Coupled Map Lattice Approach to Spatiotemporal Chaos 59
3.2.1 Spatiotemporal Chaos 59
3.2.2 Introduction to Coupled Map Lattices 61
3.2.3 Comparison with Other Approaches 64
3.3 Phenomenology of Spatiotemporal Chaos in the Diffusively Coupled Logistic Lattice 65
3.3.1 Introduction 65
3.3.2 Frozen Random Patterns and Spatial Bifurcations 66
3.3.3 Pattern Selection with Suppression of Chaos 69
3.3.4 Brownian Motion of Chaotic Defects and Defect Turbulence 70
3.3.5 Spatiotemporal Intermittency (STI) 71
3.3.6 Stability of Fully Developed Spatiotemporal Chaos (FDSTC) Sustained by the Supertransients 75
3.3.7 Traveling Waves 77
3.3.8 Supertransients 81
3.4 CML Phenomenology as a Problem of Complex Systems 83
3.5 Phenomenology in Open-Flow Lattices 84
3.5.1 Introduction 84
3.5.2 Spatial Bifurcation to Down-Flow 85
3.5.3 Convective Instability and Spatial Amplification of Fluctuations 86
3.5.4 Phase Diagram 89
3.5.5 Spatial Chaos 91
3.5.6 Selective Amplification of Input 93
3.6 Universality ... 94
3.7 Theory for Spatiotemporal Chaos 97
3.8 Applications of Coupled Map Lattices 100
3.8.1 Pattern Formation (Spinodal Decomposition) 100
3.8.2 Crystal Growth and Boiling 101
3.8.3 Convection 101
3.8.4 Spiral and Traveling Waves in Excitable Media 103
3.8.5 Cloud Dynamics and Geophysics 104
Contents

3.8.6 Ecological Systems .. 104
3.8.7 Evolution ... 104
3.8.8 Closing Remarks .. 105

4. Networks of Chaotic Elements 107
 4.1 GCM Model .. 107
 4.2 Clustering .. 111
 4.3 Phase Transitions Between Clustering States 115
 4.4 Ordered Phase and Cluster Bifurcation 117
 4.5 Hierarchical Clustering and Chaotic Itinerancy 122
 4.5.1 Partition Complexity 122
 4.5.2 Hierarchical Clustering 125
 4.5.3 Hierarchical Dynamics 128
 4.5.4 Chaotic Itinerancy 132
 4.6 Marginal Stability and Information Cascade 135
 4.6.1 Marginal Stability 135
 4.6.2 Information Cascade 139
 4.7 Collective Dynamics ... 143
 4.7.1 Remnant Mean-Field Fluctuation 143
 4.7.2 Hidden Coherence 146
 4.7.3 Instability of the Fixed Point
 of the Perron–Frobenius Operator 150
 4.7.4 Destruction of Hidden Coherence
 by Noise and Anomalous Fluctuations 153
 4.7.5 Heterogeneous Systems 155
 4.7.6 Significance of Collective Dynamics 156
 4.8 Universality and Nonuniversality 157
 4.8.1 Universality of Clustering and Other Transitions 157
 4.8.2 Globally Coupled Tent Map:
 Novelty Within Universality 159

5. Significance of Coupled Chaotic Systems
 to Biological Networks ... 163
 5.1 Relevance of Coupled Maps
 to Biological Information Processing 163
 5.2 Application of Coupled Maps to Information Processing 164
 5.2.1 Memory to Attractor Mapping
 and the Switching Process 164
 5.2.2 Chaotic Itinerancy and Spontaneous Recall 168
 5.2.3 Optimization and Search by Spatiotemporal Chaos
 as Spatiotemporally Structured Noise 170
 5.2.4 Local–Global Transformation by Traveling Waves –
 Information Creation and Transmission
 by Chaotic Traveling Waves 170
5.2.5 Selective Amplification of Input Signals
by the Unidirectionally Coupled Map Lattice170
5.3 Information Dynamics of a CML with One-Way Coupling171
5.4 Design of Coupled Maps and Plastic Dynamics175
5.5 Construction of Dynamic Many-to-Many Logic
and Information Processing178
5.6 Implications to Biological Networks179
 5.6.1 Prototype of Hierarchical Structures180
 5.6.2 Prototype of Diversity and Differentiation180
 5.6.3 Formation and Collapse of Relationships184
 5.6.4 Clustering in Hypercubic Coupled Maps;
 Self-organizing Genetic Algorithms184
 5.6.5 Homeochaos ..186
 5.6.6 Summing Up189

6. Chaotic Information Processing in the Brain191
 6.1 Hermeneutics of the Brain191
 6.2 A Brief Comment on Hermeneutics
 (the Inside and the Outside)194
 6.3 A Method for Understanding the Brain and Mind –
 Internal Description195
 6.4 Evidence of Chaos in Nervous Systems196
 6.5 The Origin of Neurochaos198
 6.6 The Implications of Stochastic Renewal of Maps203
 6.6.1 Chaotic Game203
 6.6.2 Skew-Product Transformations204
 6.7 A Model for Dynamic Memory205
 6.8 A Model for Dynamically Linking Memories206
 6.9 Significance of Neurochaos212
 6.10 Temporal Coding214
 6.11 Capillary Chaos as a Complex Dynamics219
 6.11.1 Significance of Capillary Pulsation
 in the Brain Functions219
 6.11.2 Embedding Theorems220
 6.11.3 Experimental Systems221
 6.11.4 Reconstruction of the Dynamics222
 6.11.5 Calculations of Lyapunov Exponents224
 6.11.6 The Condition Dependence226
 6.11.7 Cardiac Chaos230
 6.11.8 Information Structure231
 6.11.9 Implications of Capillary Chaos235
7. Conversations with Authors .. 237
 7.1 Concluding Discussions ... 237
 7.2 Questions and Answers ... 239
 7.2.1 The Significance of Models
 in Complex Systems Research 239
 7.2.2 Chaotic Itinerancy .. 243
 7.2.3 New Information Theory and Internal Observation ... 246

References .. 251

Index ... 267
Complex Systems: Chaos and Beyond
A Constructive Approach with Applications in Life Sciences
Kaneko, K.; Tsuda, I.
2001, XIII, 274 p., Hardcover
ISBN: 978-3-540-67202-9