<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5</td>
<td>A Case Study: Xe on Silver</td>
<td>215</td>
</tr>
<tr>
<td>8.6</td>
<td>Applications</td>
<td>228</td>
</tr>
<tr>
<td>8.6.1</td>
<td>Boundary Conditions in Hydrodynamics</td>
<td>228</td>
</tr>
<tr>
<td>8.6.2</td>
<td>The Layering Transition</td>
<td>236</td>
</tr>
<tr>
<td>8.6.3</td>
<td>Spreading of Wetting Liquid Drops</td>
<td>239</td>
</tr>
<tr>
<td>8.7</td>
<td>Two-Dimensional Fluids*</td>
<td>243</td>
</tr>
<tr>
<td>8.7.1</td>
<td>2D Hydrodynamics</td>
<td>243</td>
</tr>
<tr>
<td>8.7.2</td>
<td>Relation Between Sliding Friction and Diffusion</td>
<td>245</td>
</tr>
<tr>
<td>8.8</td>
<td>Solid-Fluid Heat Transfer</td>
<td>248</td>
</tr>
<tr>
<td>8.9</td>
<td>Non-linear Sliding Friction</td>
<td>254</td>
</tr>
<tr>
<td>8.9.1</td>
<td>Dynamical Phase Transitions in Adsorbate Layers:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lennard–Jones Model</td>
<td>255</td>
</tr>
<tr>
<td>8.9.2</td>
<td>Dynamical Phase Transitions in Adsorbate Layers:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frenkel–Kontorova Model</td>
<td>275</td>
</tr>
<tr>
<td>8.10</td>
<td>Role of Defects at High Sliding Velocity and for Small Amplitude Vibrations*</td>
<td>278</td>
</tr>
<tr>
<td>8.10.1</td>
<td>Model</td>
<td>278</td>
</tr>
<tr>
<td>8.10.2</td>
<td>High Sliding Velocities</td>
<td>280</td>
</tr>
<tr>
<td>8.10.3</td>
<td>Small Amplitude Vibrations</td>
<td>284</td>
</tr>
<tr>
<td>8.11</td>
<td>Friction and Superconductivity: a Puzzle*</td>
<td>286</td>
</tr>
<tr>
<td>8.12</td>
<td>Layering Transition: Nucleation and Growth</td>
<td>297</td>
</tr>
<tr>
<td>9.</td>
<td>Boundary Lubrication</td>
<td>313</td>
</tr>
<tr>
<td>9.1</td>
<td>Relation Between Stress σ and Sliding Velocity v</td>
<td>314</td>
</tr>
<tr>
<td>9.2</td>
<td>Inertia and Elasticity: “Starting” and “Stopping”</td>
<td>319</td>
</tr>
<tr>
<td>9.3</td>
<td>Computer Simulations of Boundary Lubrication</td>
<td>322</td>
</tr>
<tr>
<td>9.4</td>
<td>Origin of Stick-Slip Motion and of the Critical Velocity v_c</td>
<td>324</td>
</tr>
<tr>
<td>9.5</td>
<td>Comparison with Experiments and Discussion</td>
<td>329</td>
</tr>
<tr>
<td>10.</td>
<td>Elastic Interactions and Instability Transitions</td>
<td>335</td>
</tr>
<tr>
<td>10.1</td>
<td>Elastic Instability Transition</td>
<td>335</td>
</tr>
<tr>
<td>10.2</td>
<td>Elastic Coherence Length</td>
<td>341</td>
</tr>
<tr>
<td>10.3</td>
<td>Sliding of Islands, Big Molecules, and Atoms</td>
<td>345</td>
</tr>
<tr>
<td>10.4</td>
<td>Sliding Friction: Contribution from Defects*</td>
<td>354</td>
</tr>
<tr>
<td>11.</td>
<td>Stress Domains, Relaxation, and Creep</td>
<td>363</td>
</tr>
<tr>
<td>11.1</td>
<td>The Model</td>
<td>364</td>
</tr>
<tr>
<td>11.2</td>
<td>Critical Sliding State at Zero Temperature</td>
<td>367</td>
</tr>
<tr>
<td>11.3</td>
<td>Relaxation and Creep at Finite Temperature</td>
<td>370</td>
</tr>
<tr>
<td>11.4</td>
<td>Time-Dependent Plastic Deformation in Solids</td>
<td>382</td>
</tr>
<tr>
<td>12.</td>
<td>Lubricated Friction Dynamics</td>
<td>395</td>
</tr>
<tr>
<td>12.1</td>
<td>Small Corrugation: Shear-Melting and Freezing</td>
<td>396</td>
</tr>
<tr>
<td>12.2</td>
<td>Large Corrugation: Interdiffusion and Slip at Interface</td>
<td>405</td>
</tr>
</tbody>
</table>
13. **Dry Friction Dynamics** .. 415
 13.1 A Case Study: Creep and Inertia Motion 416
 13.2 Memory Effects: Time Dependence of Contact Area 418
 13.3 Theory .. 421
 13.4 Non-linear Analysis and Comparison with Experiments ... 430

14. **Novel Sliding Systems** .. 435
 14.1 Dynamics of Earthquakes 435
 14.2 Sliding on Ice and Snow 439
 14.3 Lubrication of Human and Animal Joints 445
 14.4 Sliding of Flux-Line Systems and Charge Density Waves ... 447
 14.4.1 Flux-Line Systems 447
 14.4.2 Charge Density Waves 462
 14.5 Frictional Coulomb Drag
 Between Two Closely Spaced Solids 465
 14.6 Muscle Contraction* 470
 14.7 Internal Friction
 and Plastic Stick-Slip Instabilities in Solids 480
 14.8 Rolling Resistance .. 486
 14.9 Friction Dynamics for Granular Materials 492

15. **Outlook** .. 497

References .. 499

Subject Index .. 513
Sliding Friction
Physical Principles and Applications
Persson, B.
2000, XI, 516 p., Hardcover
ISBN: 978-3-540-67192-3