Actin-Myosin Interactions

An Overview of the Actin-Myosin Interactions
D.D. Thomas and O. Roopnarine

1 Structural Changes in Actin and Myosin Due to Their Strong and Weak Interactions .. 2
2 Fluorescence Resonance Energy Transfer in Actomyosin Complexes .. 2
3 Insights into Actomyosin Interactions from Actin Mutations 2
4 Role of Charges in the Actomyosin Complex 3
5 The Alanine-Scanning Mutagenesis of Dictyostelium Myosin II at the Ionic Interface with Actin 4
6 Familial Hypertrophic Cardiomyopathic Mutations That Affect the Actin-Myosin Interaction .. 4
7 Coupling Between Chemical and Mechanical Events and Conformation of Single Protein Molecules 4
References .. 5

Changes in Actin and Myosin Structural Dynamics Due to Their Weak and Strong Interactions
D.D. Thomas, E. Prochniewicz, and O. Roopnarine

1 Introduction .. 7
2 Changes in Myosin Structural Dynamics Induced by Actin 8
 2.1 Global Motions of Catalytic Domain: Disorder-to-Order Transition ... 10
 2.2 Global Motion of Light Chain Domain: Disorder-to-Order Transition, Two Angles .. 11
 2.3 Internal Motion of the Myosin Catalytic Domain: Resolve Three Structural States .. 12
3 Changes in Actin Structural Dynamics Induced by Myosin 12
 3.1 Global Dynamics of Actin .. 12
 3.2 Internal Dynamics of Actin ... 14
4 Summary and Conclusions ... 15
References .. 17
Fluorescence Resonance Energy Transfer in Acto-Myosin Complexes
C.M. Yengo and C.L. Berger

1 Structure and Function of the Acto-Myosin Complex 21
2 Fluorescence Resonance Energy Transfer 23
3 Results and Discussion 25
References .. 29

Insights into Actomyosin Interactions from Actin Mutations
T.C. Doyle and E. Reisler

1 Introduction .. 31
2 Use of Actin Mutants in Actomyosin Studies 33
3 D24/D25 and E99/E100 in Loops 18–29 and 93–102 34
4 Acidic N-Terminus 2–5 37
5 Specificity of Actomyosin Weak Binding 41
6 Hydrophobic Strong Binding Residues 42
7 C-Terminus of Actin and the 262–274 Plug 44
8 Conclusions .. 45
References .. 47

Role of Charges in Actomyosin Interactions
P. Chaussepied and J. Van Dijk

1 Introduction ... 51
2 Structure of the Actomyosin Interface 51
3 Dynamics of the Actomyosin Complex 53
4 Role of the Ionic Interactions 53
5 Studies of the Ionic Interactions by Chemical Cross-Linking
Experiments .. 54
 5.1 Cross-Linking Reactions and Identification
 of the Cross-Linking Sites 55
 5.2 Regulation of the Cross-Linking Sites by Nucleotide
 Analogues .. 56
6 A New Model for the Actomyosin Interface During
 the ATPase Cycle ... 58
7 Conclusions .. 60
References .. 61

The Alanine-Scanning Mutagenesis of Dictyostelium Myosin II
at the Ionic Interface with Actin
H. Asukagawa and K. Sutoh

1 Introduction ... 65
2 Materials and Methods 67
 2.1 Construction and Expression of Recombinant Myosins 67
Actin-Based Calcium Regulation

An Overview of Actin-Based Calcium Regulation

S.S. Lehrer

1. **Introduction** ... 107
2. **Cooperativity in the Ca\(^{2+}\) Regulation of Muscle Contraction** 107
3. **Motility Assays of Calcium Regulation of Actin Filaments** 108
4. **The Ultrastructural Basis of Actin Filament Regulation** 108
5. **The Role of Troponin in the Ca\(^{2+}\) Regulation of Skeletal Muscle Contraction** .. 108
6. **Structural Changes Between Regulatory Proteins and Actin: A Regulation Model by Tropomyosin-Troponin Based on FRET Measurements** .. 109

Cooperativity in the Ca\(^{2+}\) Regulation of Muscle Contraction

M.A. Geeves and S.S. Lehrer

1. **Introduction** ... 111
2. **The Problem: The Force/pCa\(^{2+}\) Curve** 111
3. **Components of the Regulatory System** 112
4. **The Three Thin Filament States from Solution Studies** 114
 4.1 **Actin-S1 ATPase: Two Activity States** 114
 4.2 **Equilibrium Binding of S1 to Actin Filaments** 115
 4.3 **Kinetics of S1 Binding to Actin Filaments: Three S1-Binding States** ... 117
5. **Relationship of Structural States to Solution States** 120
 5.1 **Observation of States** ... 120
 5.1.1 **Probes of Equilibrium Titrations and Kinetics** 120
 5.1.2 **X-Ray Diffraction** ... 121
 5.1.3 **Electron Microscopy** ... 121
6. **Size of the Cooperative Units** 122
 6.1 **Cooperativity of Ca\(^{2+}\) Binding to Troponin** 122
 6.2 **Cooperativity of Blocked to Closed Transition** 123
 6.3 **Cooperativity of Closed to Open Transition** 125
7. **Relationship of Solution States to Fibers** 126

References ... 129

Motility Assays of Calcium Regulation of Actin Filaments

M.A. LaMadrid, P.B. Chase, and A.M. Gordon

1. **Introduction** ... 133
2. **Materials and Methods** .. 135
3. **Results** .. 137
4. **Discussion** ... 139
5. **Conclusion** ... 145

References ... 146
Contents

3 A New Model For Regulation ... 197
 3.1 FRET Data Suggest a New Regulation Model 197
 3.2 Evaluation of the Regulation Model 198
4 Conclusions ... 200
References .. 201

Subject Index ... 205
Molecular Interactions of Actin
Actin-Myosin Interaction and Actin-Based Regulation
Thomas, D.D.; Remedios, C.G.d. (Eds.)
2002, XII, 207 p. 30 illus., Hardcover
ISBN: 978-3-540-67111-4