Table of Contents

Prerequisites .. XIII
Notation ... XIX

1. Introduction and Historical Survey 1
 1.1 Liouville, Hermite, Lindemann, Gel’fond, Baker 1
 1.2 Lower Bounds for $|a_1^{b_1} \cdots a_m^{b_m} - 1|$ 6
 1.3 The Six Exponentials Theorem and the Four Exponentials
 Conjecture .. 13
 1.4 Algebraic Independence of Logarithms 15
 1.5 Diophantine Approximation on Linear Algebraic Groups 19
 Exercises .. 21

Part I. Transcendence

2. Transcendence Proofs in One Variable 29
 2.1 Introduction to Transcendence Proofs 29
 2.2 Auxiliary Lemmas ... 33
 2.3 Schneider’s Method with Alternants – Real Case 37
 2.4 Gel’fond’s Method with Interpolation Determinants – Real Case . 43
 2.5 Gel’fond-Schneider’s Theorem in the Complex Case 49
 2.6 Hermite-Lindemann’s Theorem in the Complex Case 55
 Exercises ... 59

3. Heights of Algebraic Numbers 65
 3.1 Absolute Values on a Number Field 66
 3.2 The Absolute Logarithmic Height (Weil) 75
 3.3 Mahler’s Measure ... 78
 3.4 Usual Height and Size 80
 3.5 Liouville’s Inequalities 82
 3.6 Lower Bound for the Height 86
 Open Problems .. 105
 Exercises ... 106
Appendix – Inequalities Between Different Heights of a Polynomial – From a Manuscript by Alain Durand 113

4. The Criterion of Schneider-Lang 115
 4.1 Algebraic Values of Entire Functions Satisfying Differential Equations ... 115
 4.2 First Proof of Baker’s Theorem 118
 4.3 Schwarz’ Lemma for Cartesian Products 122
 4.4 Exponential Polynomials 130
 4.5 Construction of an Auxiliary Function 131
 4.6 Direct Proof of Corollary 4.2 136
 Exercises .. 141

Part II. Linear Independence of Logarithms and Measures

5. Zero Estimate, by Damien Roy 147
 5.1 The Main Result 147
 5.2 Some Algebraic Geometry 150
 5.3 The Group G and its Algebraic Subgroups 156
 5.4 Proof of the Main Result 164
 Exercises .. 166

6. Linear Independence of Logarithms of Algebraic Numbers 169
 6.1 Applying the Zero Estimate 170
 6.2 Upper Bounds for Alternants in Several Variables 175
 6.3 A Second Proof of Baker’s Homogeneous Theorem 181
 Exercises .. 184

7. Homogeneous Measures of Linear Independence 187
 7.1 Statement of the Measure 187
 7.2 Lower Bound for a Zero Multiplicity 192
 7.3 Upper Bound for the Arithmetic Determinant 195
 7.4 Construction of a Nonzero Determinant 199
 7.5 The Transcendence Argument — General Case 203
 7.6 Proof of Theorem 7.1 — General Case 208
 7.7 The Rational Case: Fel’dman’s Polynomials 214
 7.8 Linear Dependence Relations between Logarithms 222
 Open Problems ... 227
 Exercises .. 227
Table of Contents

Part III. Multiplicities in Higher Dimension

8. Multiplicity Estimates, by Damien Roy .. 231
 8.1 The Main Result .. 231
 8.2 Some Commutative Algebra 234
 8.3 The Group G and its Invariant Derivations 238
 8.4 Proof of the Main Result 245
 Exercises .. 247

9. Refined Measures .. 251
 9.1 Second Proof of Baker’s Nonhomogeneous Theorem 252
 9.2 Proof of Theorem 9.1 262
 9.3 Value of $C(m)$... 286
 9.4 Corollaries .. 302
 Exercises .. 314

10. On Baker’s Method .. 317
 10.1 Linear Independence of Logarithms of Algebraic Numbers 317
 10.2 Baker’s Method with Interpolation Determinants 329
 10.3 Baker’s Method with Auxiliary Function 356
 10.4 The State of the Art 360
 Exercises .. 371

Part IV. The Linear Subgroup Theorem

11. Points Whose Coordinates are Logarithms of Algebraic Numbers ... 375
 11.1 Introduction ... 375
 11.2 One Parameter Subgroups 379
 11.3 Six Variants of the Main Result 381
 11.4 Linear Independence of Logarithms 387
 11.5 Complex Toruses 394
 11.6 Linear Combinations of Logarithms with Algebraic Coefficients ... 398
 11.7 Proof of the Linear Subgroup Theorem 404
 Exercises .. 411

12. Lower Bounds for the Rank of Matrices 417
 12.1 Entries are Linear Polynomials 418
 12.2 Entries are Logarithms of Algebraic Numbers 432
 12.3 Entries are Linear Combinations of Logarithms 435
 12.4 Assuming the Conjecture on Algebraic Independence of
 Logarithms .. 437
 12.5 Quadratic Relations 438
Part V. Simultaneous Approximation of Values of the Exponential Function in Several Variables

13. A Quantitative Version of the Linear Subgroup Theorem 445
 13.1 The Main Result 447
 13.2 Analytic Estimates 450
 13.3 Exponential Polynomials 459
 13.4 Proof of Theorem 13.1 464
 13.5 Directions for Use 471
 13.6 Introducing Feld’man’s Polynomials 476
 13.7 Duality: the Fourier-Borel Transform 480
 Exercises 490

14. Applications to Diophantine Approximation 495
 14.1 A Quantitative Refinement to Gel’fond-Schneider’s Theorem 496
 14.2 A Quantitative Refinement to Hermite-Lindemann’s Theorem 510
 14.3 Simultaneous Approximation in Higher Dimension 521
 14.4 Measures of Linear Independence of Logarithms (Again) 536
 Open Problems 547
 Exercises 549

15. Algebraic Independence 555
 15.1 Criteria: Irrationality, Transcendence, Algebraic Independence 555
 15.2 From Simultaneous Approximation to Algebraic Independence 569
 15.3 Algebraic Independence Results: Small Transcendence Degree 587
 15.4 Large Transcendence Degree: Conjecture on Simultaneous Approximation 594
 15.5 Further Results and Conjectures 598
 Exercises 606

References 615

Index 629
Diophantine Approximation on Linear Algebraic Groups
Transcendence Properties of the Exponential Function in Several Variables
Waldschmidt, M.
2000, XXIII, 633 p., Hardcover
ISBN: 978-3-540-66785-8