Contents

Part I Introduction and Background

1. **Introduction** .. 3

2. **Thermodynamics** .. 7
 2.1 Some Definitions .. 7
 2.2 The Principles of Thermodynamics 8
 2.3 Internal Energy .. 9
 2.4 Other Thermodynamic Functions; Maxwell’s Relations . 10
 2.5 Work and Equilibrium 13
 2.6 Integrated Equations 16
 2.7 Chemical Potentials and Supersaturation 17
 2.7.1 Supersaturated Vapor (Ideal Gas) 18
 2.7.2 Supersaturated Solution 18
 2.7.3 Undercooled Condensed Phase 19
 2.8 The “Surface Phase” 19

3. **Statistical Thermodynamics** 23
 3.1 Partition Functions; General 23
 3.2 Partition Function in a Continuum Phase Space 24
 3.3 Examples of Simple Partition Functions 26
 3.3.1 Translational Motion 26
 3.3.2 Harmonic Oscillator 26
 3.3.3 Free Rotation 30
 3.4 Canonical Partition Functions of Pure Phases;
 Free Energy and Chemical Potential 32
 3.4.1 The Ideal Gas 32
 3.4.2 The “Lattice Gas” 32
 3.4.3 The Monatomic Einstein Crystal 33
 3.4.4 The One-Dimensional Non-Einstein Crystal 34
 3.5 Partition Function of Associated Vapor 38
Part II Equilibria

4. Equilibrium Between Large Phases;
The Vapor Pressure of Solids 43
 4.1 The Clausius-Clapeyron Equation 43
 4.2 Statistical-Thermodynamic Treatment 45
 4.3 Repetitive-Step; Thermodynamic Frequency 45
 4.4 Kinetic Treatment of the Equilibrium Crystal-Vapor 49
 4.5 Equilibrium in the Different Sites on the Crystal Surface 51
 4.6 Adsorbed and Incorporated Molecules;
 the Different Types of Crystal Face 55

5. The Surface Tension of Crystals 61
 5.1 The Broken-Bond Approach to the Surface Energy of a Solid:
 the Born–Stern Procedure 61
 5.2 Surface Stress ... 65
 5.3 Interfacial Tension 67
 5.4 Stefan’s Rule ... 70

6. Equilibrium Between Large Three-
and Two-Dimensional Phases: Adsorption Phenomena 73
 6.1 Partition Function and Chemical Potential
 of an Adsorbed Layer 73
 6.1.1 The Ising Model 75
 6.1.2 The Mean Field Approximation 77
 6.2 Desorption Work .. 78
 6.3 Frumkin–Fowler’s Adsorption Isotherm 79
 6.4 Multilayer Adsorption 84
 6.5 Two-Dimensional Phase Transitions; Spreading Pressure ... 88
 6.6 Two-Dimensional Versus Three Dimensional Phases;
 a Link to Wetting .. 93
 6.7 Displacement and Mixing
 of Condensed Two-Dimensional Phases 94

7. Thin Films, Surface Roughening, and Surface Alloys 103
 7.1 Chemisorbed Versus Physisorbed Layers; Thin Solid Films .. 103
 7.2 Surface Roughness Considered as a Special Case
 of Adsorption ... 106
 7.3 Adsorption on a Thermally Rough Substrate:
 Surface Alloying .. 113
 7.4 Surface Melting .. 119
8. Equilibrium Between a Small and a Large Phase 123
 8.1 The Gibbs Potential of a Small Phase;
 the Capillarity Approximation 123
 8.2 The Size-Dependent Chemical Potential 128
 8.2.1 Droplets in a Vapor 129
 8.2.2 Gas Bubbles in a Liquid 130
 8.2.3 Solid Clusters in a Melt 132
 8.3 Statistical Mechanical Treatment of the Free Energy
 of a Solid Cluster 133
 8.4 Capillarity Approximation Versus Model Calculations 138

9. Equilibrium Shapes of Crystals 147
 9.1 Curie–Wulff’s Condition and Wulff’s Theorem 148
 9.2 Herring’s γ-Plot 151
 9.3 Faceting of a K Face 156
 9.4 Equilibrium Shape on a Foreign Substrate 158
 9.5 Equilibrium Shape of a Droplet on a Substrate:
 Young’s Equation 161
 9.6 Entropy Effects on Surface Free Energy
 and Equilibrium Shape 163
 9.7 Equilibrium of Small Anisotropic Phases;
 the Thermodynamic Approach 166
 9.8 Equilibrium of Small Anisotropic Phases;
 the Atomistic Approach 168
 9.9 The Influence of Foreign Adsorption
 on the Equilibrium Shape 174
 9.9.1 The Different Types of Crystal Face 177
 9.9.2 The Equilibrium Shape 179
 9.9.3 Faceting 180

Part III Nucleation

10. Homogeneous Nucleation; the Phase Approach 183
 10.1 The Classical Nucleation Work. Droplets in a Vapor 184
 10.2 Bubbles in Liquids; Boiling and Cavitation 189
 10.2.1 Boiling under Positive External Pressure 190
 10.2.2 Boiling under Negative External Pressure 192
 10.3 Anisotropic Embryos; the Thermodynamic Approach 193
 10.4 Anisotropic Embryos; the Atomistic Approach 194
 10.5 The Volmer–Weber Treatment of Nucleation Kinetics 196

11. Homogeneous Nucleation; the Chemical Approach 201
 11.1 Equilibrium in Associated Vapor 201
 11.2 Frenkel’s Size Distribution 207
11.3 Frenkel’s Treatment of Steady State Nucleation Kinetics 210
11.4 The Becker–Döring Treatment of Steady State Nucleation Kinetics .. 215
11.5 Nucleation Kinetics in Condensed Systems 221
11.6 Cluster Isomers and Equilibrium Shape 223

12. Nucleation on a Foreign Substrate 227
12.1 Nucleation on a Foreign Solid Substrate 227
12.2 Nucleation on the Interface Between Two Fluids 233
12.3 Two-Dimensional Nucleation 235
12.4 Role of the Structure in Substrate Nucleation: Epitaxy 239
12.4.1 Epitaxy by Classical Three-Dimensional Nucleation ... 240
12.4.2 Epitaxy by “Non-Classical” Three-Dimensional Nucleation .. 241
12.5 Nucleation on Foreign Particles 244
12.5.1 Nucleation on Perfectly Wetted Spherical Particles 245
12.5.2 Nucleation on Better-Than-Perfectly-Wetted Spherical Particles 247

13. Some Specific Cases of Nucleation 249
13.1 Nucleation on Charged Particles 249
13.2 Solidification of Small Droplets 251
13.3 Nucleation in a Small Volume 255
13.4 Nucleation and Ostwald’s Rule 257
13.5 Nucleation in a Binary Alloy 262
13.5.1 Three-Dimensional Binary Alloys 262
13.5.2 Two-Dimensional (Surface) Alloys 265

14. Time-Dependent Nucleation Kinetics 267
14.1 The Time Lag in Nucleation 267
14.2 Non-Classical Nucleation on a Substrate 270

Part IV Crystal Growth

15. Elementary Processes on the Surface of a Crystal 279
15.1 Sticking ... 281
15.2 Surface Migration 283
15.3 Mean Diffusion Length 285

16.1 Kinetics of Growth of a Planar K Face 292
16.1.1 The Maximum Growth Rate 292
Contents

16.1.2 Incomplete Sticking; Kinetic Coefficients 294
16.1.3 A Simple Case of Diffusion-Controlled Growth 295
16.2 Diffusion Versus Capillarity: Morphological Stability 297

17. Growth of an F Face of a Perfect Crystal 303
17.1 The Transition from Layer-by-Layer to Continuous Growth .. 303
17.2 A One-Dimensional K Face: the Monomolecular Step 308
17.3 Rate of Propagation of a Single Straight Step 314
17.3.1 Advancement Controlled by Surface Diffusion 314
17.3.2 Advancement Controlled by Volume Diffusion 318
17.4 Rate of Advancement of a Curved Step 320
17.5 Growth by Two-Dimensional Nucleation;
 Mononuclear Growth .. 323
17.6 Growth by Two-Dimensional Nucleation;
 Polynuclear Growth .. 326

18. Growth of an F Face of an Imperfect Crystal 331
18.1 Rate of Propagation of a Train of Equidistant Steps 332
18.1.1 Advancement Controlled by Surface Diffusion 332
18.1.2 Advancement Controlled by Volume Diffusion 333
18.2 Growth Spirals .. 336
18.2.1 Growth Governed by Surface Diffusion 339
18.2.2 Growth Governed by Volume Diffusion 340

19. Conclusion .. 341

Appendices ... 343
A. Legendre Transformations 343
B. Method of Lagrange Multipliers 344
C. Euler’s Theorem .. 344
D. Stirling’s Approximation 345
E. Maximum Term Approximation 345
F. Integrals of the Type \(\int_{0}^{\infty} x^n \exp(-\alpha x^2) \, dx \) 347

References ... 349

Index ... 357
The Atomistic Nature of Crystal Growth
Mutaftschiev, B.
2001, XIII, 368 p., Hardcover
ISBN: 978-3-540-66496-3