Contents

1. **Introduction** .. 1
 1.1 The Start of Cosmic Ray Research 1
 1.2 The Scope of Cosmic Ray Research 1
 1.3 Organization of the Book 3

2. **Cosmic Rays as Part of the Universe** 7
 2.1 Our Present View of the Structure of the Universe 7
 2.2 Interstellar Medium 10
 2.3 Cosmic Photon Fields 17
 2.4 Cosmic Magnetic Fields 19
 2.5 Intergalactic Medium 23
 2.6 Interlude .. 24

3. **Direct Observations of Cosmic Rays** 25
 3.1 The Cosmic Ray Landscape 26
 3.2 Solar Modulation 29
 3.3 Solar and Heliospheric Cosmic Rays 36
 3.3.1 Solar Flare Cosmic Ray Particles 38
 3.3.2 The Anomalous Cosmic Ray Component 46
 3.4 Extrasolar Cosmic Rays 46
 3.4.1 Elemental Composition 46
 3.4.2 Isotopic Composition 57
 3.4.3 Anisotropy 64
 3.4.4 Time History from Cosmogenic Nuclei 69
 3.4.5 Ultrahigh Energy Cosmic Rays 70

4. **Interactions of Cosmic Ray Electrons** 73
 4.1 Synchrotron Radiation 74
 4.1.1 Synchrotron Power 74
 4.1.2 Emission and Transfer of Synchrotron Radiation ... 76
 4.1.3 Synchrotron Radiation from Cosmic Ray Electrons
in the Interstellar Medium 78
 4.1.4 Synchrotron Energy Loss of Relativistic Electrons .. 80
 4.2 Inverse Compton Scattering 80
X

Contents

4.2.1 Inverse Compton Power 81
4.2.2 Inverse Compton Scattering of Target Photons
 in the Interstellar Medium by Cosmic Ray Electrons . 84
4.2.3 Inverse Compton Energy Loss
 of Relativistic Electrons 88
4.3 Triplet Pair Production 89
4.4 Nonthermal Relativistic Electron Bremsstrahlung 93
 4.4.1 Nonthermal Bremsstrahlung Power 93
 4.4.2 Nonthermal Bremsstrahlung
 of Cosmic Ray Electrons in the Interstellar Medium . 95
 4.4.3 Bremsstrahlung Energy Loss of Relativistic Electrons 97
4.5 Ionization and Coulomb Interactions 98
4.6 Total Energy Loss Rate 99
4.7 Continuum Radiation Processes
 of Relativistic Electrons 102

5. Interactions of Cosmic Ray Nuclei 105
 5.1 Relativistic Kinematics of Inelastic Collisions 105
 5.1.1 Threshold Energy 106
 5.1.2 The Energy of One Particle
 Seen from the Rest System of Another 107
 5.2 Interactions Between Cosmic Ray Nuclei and Cosmic Photons 107
 5.2.1 Photo-Pair Production 109
 5.2.2 Photo-Hadron Production 109
 5.2.3 Photo-Disintegration 112
 5.3 Interactions Between Cosmic Ray Nuclei and Matter 114
 5.3.1 Gamma-Ray, Electron,Positron
 and Neutrino Source Functions 115
 5.3.2 Pion Production Spectra 116
 5.3.3 π^0 Decay γ-Rays 120
 5.3.4 Secondary Electrons and Positrons 123
 5.3.5 Secondary Neutrinos 125
 5.3.6 Energy Loss by Pion Production 128
 5.3.7 Excitation of Nuclei 128
 5.3.8 Coulomb and Ionization Interactions 130
 5.3.9 Catastrophic Losses from Fragmentation
 and Radioactive Decay 135
 5.3.10 Total Energy Loss Rate
 from Interactions with Matter 138
 5.3.11 Ionization and Heating Rate
 of Interstellar Matter by Cosmic Rays 139
 5.3.12 Continuum Radiation Processes of Relativistic Nuclei 140
6. Indirect Observations of Cosmic Rays 143
 6.1 Clues from Radio Astronomy 143
 6.1.1 Free–Free Emission 143
 6.1.2 Radio Continuum Surveys 145
 6.2 Clues from γ-Ray Astronomy 154
 6.2.1 γ-Ray Emission Above 10 MeV 155
 6.2.2 Continuum γ-Ray Emission Below 10 MeV 162
 6.2.3 γ-Ray Line Emission Below 10 MeV
 from the Orion Region 163
 6.2.4 Interlude 164
 6.3 γ-Ray Point Sources 165
 6.3.1 γ-Ray Observations of Active Galactic Nuclei .. 165
 6.3.2 Nonthermal γ-Ray Emission Processes in the Jets
 of Active Galactic Nuclei 172
 6.3.3 Interlude 176
 6.3.4 Galactic γ-Ray Sources 177

7. Immediate Consequences
 of Galactic Cosmic Ray Observations 179
 7.1 Cosmic Ray Energetics 179
 7.2 Global Cosmic Ray Source Energetics 180
 7.3 Cosmic Ray Scattering, Confinement and Isotropy 182

8. Statistical Mechanics of Charged Particles 183
 8.1 Basic Equations 183
 8.1.1 Plasma Parameter 183
 8.1.2 Kinetic Description of Plasmas 187
 8.1.3 Magnetohydrodynamics of Plasmas 190
 8.2 The Relativistic Vlasov Equation and Maxwell Equations.... 194
 8.3 Kinetic Theory of Plasma Waves 195
 8.3.1 Linearization of Kinetic Plasma Equations ... 195
 8.3.2 Solution of the Linearized Vlasov Equation ... 196
 8.3.3 Dispersion Relation 197
 8.3.4 The Landau Contour 200
 8.3.5 Polarization Vector 203
 8.3.6 Conductivity Tensor
 in a Homogeneous Hot Magnetized Plasma 204
 8.3.7 Energy Transfer in Dispersive Media 208

 Waves in Cold Magnetized Plasmas 211
 9.1 Plasma Waves in a Cold Moving Magnetized Plasma 211
 9.2 Plasma Waves in a Cold Magnetized Plasma at Rest 213
 9.2.1 Cold Unmagnetized Plasma at Rest 215
 9.2.2 Cold Electron-Proton Plasma 217

Waves in Hot Magnetized Isotropic Plasmas

10.1 Conductivity Tensor for Isotropic Distribution Functions
10.2 The Longitudinal Mode
10.2.1 Superluminal Waves
10.2.2 Subluminal Waves
10.3 Illustrative Example: Longitudinal Waves
 in an Equilibrium Electron Plasma
10.3.1 Superluminal Waves
10.3.2 Subluminal Waves
10.3.3 Non-relativistic Plasma Temperatures
10.3.4 Infinitely Large Speed of Light, $c \to \infty$
10.3.5 Solution of the Non-relativistic Dispersion Relation
10.3.6 Landau Damping of Subluminal Solutions
10.3.7 Weak Damping Approximation
10.4 The Transverse Modes
10.4.1 Collisionless Damping of Transverse Oscillations
10.4.2 An Illustrative Example

11. Test Wave Approach 3.

Generation of Plasma Waves

11.1 Two-Stream Instability
11.2 Cosmic-Ray-Induced Instabilities
11.2.1 Parallel Propagating Waves
11.2.2 Growth Rates at Arbitrary Angles of Propagation
11.2.3 Cosmic Ray Self-Confinement in Galaxies
11.3 Competition of Wave Growth and Damping
11.3.1 Damping by Ion-Neutral Collisions
11.3.2 Nonlinear Landau Damping
11.3.3 Wave Cascading
11.3.4 Super-Alfvénic Cosmic Ray Propagation?

12. Test Particle Approach 1.

Hierarchy of Transport Equations

12.1 Quasilinear Theory
12.2 Quasilinear Fokker-Planck Coefficients
12.2.1 Unperturbed Particle Orbits

Calculation of Transport Parameters 313

13.1 Linearly Polarized Alfvén Waves 313
 13.1.1 Alfvén Wave Fokker-Planck Coefficients 315
 13.1.2 Magnetic Turbulence Tensors 315
 13.1.3 Slab Linearly Polarized Alfvén Turbulence 318
 13.1.4 Isotropic Linearly Polarized Alfvén Waves 319

13.2 Parallel Propagating Magnetohydrodynamic Waves 320
 13.2.1 Undamped Waves 322
 13.2.2 Undamped Non-dispersive Alfvén Waves 322
 13.2.3 Influence of Damping and Dissipation 337
 13.2.4 Numerical Test of Quasilinear Theory 340

13.3 Magnetosonic Waves 342
 13.3.1 Fast Mode Wave Fokker-Planck Coefficients 343
 13.3.2 Isotropic Fast Mode Waves 345
 13.3.3 Cosmic Ray Mean Free Path from Fast Mode Waves 357
 13.3.4 Cosmic Ray Momentum Diffusion Coefficient from Fast Mode Waves 359
 13.3.5 Fast Mode Time Scale Relation 361

13.4 Cosmic Transport Parameters from Fast Mode Waves and Slab Alfvén Waves 361
 13.4.1 Modifications Due to Slab Alfvén Waves 361
 13.4.2 Transport Parameters in the Case of Admixture of Slab Alfvén Waves to Fast Mode Waves 362

14.1 Structure of the Cosmic Ray Transport Equation 365
 14.1.1 Inclusion of Momentum Losses 367
 14.1.2 Continuous and Catastrophic Momentum Losses ... 368

14.2 Steady-State and Time-Dependent Transport Equations 370

14.3 Scattering Time Method:
 Separation of Spatial and Momentum Problem 371
 14.3.1 Formal Mathematical Solution 371
 14.3.2 Leaky-Box Equations 372
 14.3.3 Illustrative Example:
 Galactic Cosmic Ray Diffusion 1 373
 14.3.4 Momentum Problem 375

14.4 Solutions Without Momentum Diffusion 378
XIV Contents

15. Interplanetary Transport of Cosmic Ray Particles 383
 15.1 Solar Flare Events 383
 15.1.1 Observations 383
 15.1.2 Comparison with Quasilinear Theory 387
 15.2 Solar Modulation of Galactic Cosmic Rays 388

16. Acceleration of Cosmic Ray Particles
 at Shock Waves .. 391
 16.1 Astrophysical Shock Waves 391
 16.2 Magnetohydrodynamic Shock Discontinuities 392
 16.2.1 Stationary Discontinuities 395
 16.2.2 Shock Waves 397
 16.3 Alfvén Wave Transmission Through a Parallel Fast Shock . 402
 16.3.1 Basic Equations 403
 16.3.2 Reflection and Transmission Coefficients 405
 16.3.3 Only Forward Moving Waves Upstream 405
 16.3.4 Only Backward Moving Waves Downstream 409
 16.3.5 Alternative Notation 410
 16.3.6 Shock Effect on Wavenumbers 410
 16.3.7 Precursor Streaming Instability 413
 16.4 Cosmic Ray Transport and Acceleration Parameters 415
 16.4.1 Upstream Cosmic Ray Transport Equation 416
 16.4.2 Downstream Cosmic Ray Transport Equation 417
 16.4.3 Scattering Center Compression Ratio 418
 16.4.4 Importance of Downstream Momentum Diffusion ... 419
 16.4.5 Interlude 420
 16.5 Solution of the Transport Equations 421
 16.5.1 Basic Equations 422
 16.5.2 Upstream Solution 424
 16.5.3 Downstream Solution 424
 16.6 Qualitative Results 428
 16.6.1 Zero Momentum Diffusion 429
 16.6.2 Finite Momentum Diffusion 431
 16.7 Maximum Particle Energy 433

17. Galactic Cosmic Rays 435
 17.1 Galactic Cosmic Ray Diffusion 2 435
 17.2 Cosmic Ray Propagation in the Leaky-Box Approximation . 436
 17.2.1 Secondary/Primary Ratio 437
 17.2.2 Secondary Cosmic Ray Clocks 438
 17.3 Cosmic Ray Propagation Including Interstellar Acceleration . 439
 17.3.1 Mathematical Solution 441
 17.3.2 Sources of Cosmic Ray Primaries 443
 17.3.3 Steady-State Primary Particle Spectrum Below R_{max} 445
Cosmic Ray Astrophysics
Schlickeiser, R.
2002, XV, 519 p. 30 illus., 2 illus. in color., Hardcover
ISBN: 978-3-540-66465-9