Table of Contents

Introduction ... IX

0 Warm-up ... 1
 0.1 Processes with Fast Markov Modulations 1
 0.1.1 Model Formulation 1
 0.1.2 Asymptotic Behavior of Distributions 2
 0.2 The Liénard Oscillator Under Random Force 6
 0.3 Filtering of Nearly Observed Processes 9
 0.4 Stochastic Approximation 11

1 Toolbox: Moment Bounds for Solutions of Stable SDEs ... 19
 1.1 Moment Bounds for Nonlinear Equations 20
 1.1.1 Key Lemma 20
 1.1.2 Bounds Efficient on Small Intervals 22
 1.1.3 Bounds Efficient on Large Intervals 24
 1.2 Bounds for Linear Equations 26
 1.2.1 Assumption on the Fundamental Matrix 26
 1.2.2 Differential Equations with Random Coefficients 27
 1.2.3 The Continuity Theorem 29
 1.2.4 Linear SDEs with Unbounded Coefficients 31
 1.3 On the Growth Rate of the Maximal Function 34
 1.3.1 Lapeyre’s Inequality 34
 1.3.2 Ornstein–Uhlenbeck Process 37
 1.3.3 Sample Path Growth 39
 1.3.4 Fernique’s Lemma 40

2 The Tikhonov Theory for SDEs 43
 2.1 The Stochastic Tikhonov Theorem 45
 2.1.1 Setting .. 45
 2.1.2 Boundary Layer Behavior 46
 2.1.3 Large Scale Behavior 49
 2.1.4 Concluding Step 54
Table of Contents

2.2 The First-Order Asymptotics for Fast Variables
- 2.2.1 Basic Hypotheses 56
- 2.2.2 The First-Order Correction 57
- 2.2.3 The First-Order Approximation of the Rest Point ... 59
- 2.2.4 Normal Approximation Result 62

2.3 Higher-Order Expansions 63
- 2.3.1 Formal Expansions 63
- 2.3.2 Convergence of the Remainder 65
- 2.3.3 Expansion Around the Rest Point 69

2.4 Stochastic Approximation: Proofs 70
- 2.4.1 Asymptotic Expansion for the Output Signal 70
- 2.4.2 The Asymptotic Expansion at the Root 78
- 2.4.3 Averaging 80
- 2.4.4 Proof of Theorem 0.4.6 83

3 Large Deviations .. 87
- 3.1 Deviations in the Uniform Metric 88
 - 3.1.1 Formulation of the Result 88
 - 3.1.2 A Lower Exponential Bound for the Non-Exit Probability 89
 - 3.1.3 An Upper Bound for the Probability of Deviation of a Trajectory from the Lebesgue Sets of S_T^f 91
 - 3.1.4 Proof of Theorem 3.1.1 99
 - 3.1.5 Example: the Ornstein–Uhlenbeck Process 104
- 3.2 Deviations in the Metric of $L^2[0,T]$ 105

4 Uniform Expansions for Two-Scale Systems 111
- 4.1 No Diffusion at the Fast Variable 112
 - 4.1.1 Formal Calculations 112
 - 4.1.2 Integrability of Coefficients 119
 - 4.1.3 The Boundary Layer Function of Zero Order 120
 - 4.1.4 Boundary Layer Functions of Higher Order 124
 - 4.1.5 Proof of Theorem 4.1.1 129
- 4.2 Expansions for the General Model 133
 - 4.2.1 Formulations 133
 - 4.2.2 Growth of Coefficients 135
 - 4.2.3 Proof of Theorem 4.2.1 136
- 4.3 Liénard Oscillator Driven by a Random Force 140
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Two-Scale Optimal Control Problems</td>
<td>145</td>
</tr>
<tr>
<td>5.1 Semilinear Controlled System</td>
<td>146</td>
</tr>
<tr>
<td>5.1.1 The Model and Main Result</td>
<td>146</td>
</tr>
<tr>
<td>5.1.2 Proof of Proposition 5.1.2</td>
<td>148</td>
</tr>
<tr>
<td>5.1.3 Proof of Proposition 5.1.3</td>
<td>155</td>
</tr>
<tr>
<td>5.1.4 Proof of Theorem 5.1.1</td>
<td>157</td>
</tr>
<tr>
<td>5.2 Structure of the Attainability Sets</td>
<td>158</td>
</tr>
<tr>
<td>5.2.1 Weak and Strong Solutions of SDEs</td>
<td>158</td>
</tr>
<tr>
<td>5.2.2 Closed Loop Controls Versus Open Loop</td>
<td>160</td>
</tr>
<tr>
<td>5.2.3 “Tubes” and Attainability Sets for Feedback Controls</td>
<td>164</td>
</tr>
<tr>
<td>5.2.4 Extreme Points of the Set of Attainable Densities</td>
<td>167</td>
</tr>
<tr>
<td>5.2.5 On the Existence of Optimal Control</td>
<td>169</td>
</tr>
<tr>
<td>5.2.6 Comparison of Attainability Sets</td>
<td>171</td>
</tr>
<tr>
<td>5.3 Convergence of the Attainability Sets, I</td>
<td>175</td>
</tr>
<tr>
<td>5.3.1 The Dontchev–Veliov Theorem</td>
<td>175</td>
</tr>
<tr>
<td>5.3.2 The First Stochastic Generalization</td>
<td>176</td>
</tr>
<tr>
<td>5.4 Convergence of the Attainability Sets, II</td>
<td>180</td>
</tr>
<tr>
<td>5.4.1 Formulation of the Result</td>
<td>180</td>
</tr>
<tr>
<td>5.4.2 The Fast Variable Model</td>
<td>182</td>
</tr>
<tr>
<td>5.4.3 General Case</td>
<td>185</td>
</tr>
<tr>
<td>5.4.4 Proof of Theorem 5.4.1</td>
<td>187</td>
</tr>
<tr>
<td>6 Applications</td>
<td>193</td>
</tr>
<tr>
<td>6.1 Applications to PDEs</td>
<td>193</td>
</tr>
<tr>
<td>6.2 Fast Markov Modulations Revisited</td>
<td>199</td>
</tr>
<tr>
<td>6.2.1 Main Result</td>
<td>199</td>
</tr>
<tr>
<td>6.2.2 Preliminaries from Weak Convergence</td>
<td>200</td>
</tr>
<tr>
<td>6.2.3 Proof of Theorem 6.3.1</td>
<td>202</td>
</tr>
<tr>
<td>6.2.4 Calculations and Estimates</td>
<td>203</td>
</tr>
<tr>
<td>6.2.5 Cox Processes with Fast Markov Modulations</td>
<td>206</td>
</tr>
<tr>
<td>6.3 Accuracy of Approximate Filters</td>
<td>207</td>
</tr>
<tr>
<td>6.4 Signal Estimation</td>
<td>208</td>
</tr>
<tr>
<td>6.5 Linear Regulator with Infinite Horizon</td>
<td>213</td>
</tr>
<tr>
<td>6.5.1 Sensitive Probabilistic Criteria</td>
<td>213</td>
</tr>
<tr>
<td>6.5.2 Linear-Quadratic Regulator</td>
<td>214</td>
</tr>
<tr>
<td>6.5.3 Preliminaries</td>
<td>216</td>
</tr>
<tr>
<td>6.5.4 Proof of Theorem 6.5.2</td>
<td>218</td>
</tr>
<tr>
<td>6.5.5 Example</td>
<td>220</td>
</tr>
</tbody>
</table>
Appendix .. 223
A.1 Basic Facts About SDEs 223
A.1.1 Existence and Uniqueness of Strong Solutions
for SDEs with Random Coefficients 223
A.1.2 Existence and Uniqueness with a Lyapunov Function 224
A.1.3 Moment Bounds for Linear SDEs 225
A.1.4 The Novikov Condition 226
A.2 Exponential Bounds for Fundamental Matrices 227
A.2.1 Uniform Bound in the Time-Homogeneous Case 227
A.2.2 Nonhomogeneous Case 229
A.2.3 Models with Singular Perturbations 230
A.3 Total Variation Distance and Hellinger Processes ... 234
A.3.1 Total Variation Distance and Hellinger Integrals ... 234
A.3.2 The Hellinger Processes 235
A.3.3 Example: Diffusion-Type Processes 238
A.4 Hausdorff Metric ... 239
A.5 Measurable Selection 240
A.5.1 Aumann Theorem 240
A.5.2 Filippov Implicit Function Lemma 241
A.5.3 Measurable Version of the Carathéodory Theorem ... 241
A.6 Compact Sets in \(\mathbf{P}(X) \) 243
A.6.1 Notations and Preliminaries 243
A.6.2 Integration of Stochastic Kernels 245
A.6.3 Distributions of Integrals 246
A.6.4 Compactness of the Limit of Attainability Sets 248
A.6.5 Supports of Conditional Distributions 250
A.7 The Komlós Theorem 250

Historical Notes .. 255

References ... 259

Index .. 265
Two-Scale Stochastic Systems
Asymptotic Analysis and Control
Kabanov, Y.; Pergamenshchikov, S.
2003, XIV, 266 p., Hardcover
ISBN: 978-3-540-65332-5