CONTENTS

Chapter 1. Introduction 1

Chapter 2. Five-Membered Heterocycles with One Heteroatom 3

Chapter 3. Benzo-Fused Five-Membered Heterocycles with One Heteroatom 181

Chapter 4. Five-Membered Heterocycles with Two Heteroatoms 357

Chapter 5. Five-Membered Heterocycles with More Than Two Heteroatoms 487

Chapter 6. Meso-Ionic Heterocycles 579

Subject Index 627
2 PYRROLES

2.1 General

2.1.1 Extraction

2.1.2 Ehrlich Test

2.2 Synthesis

2.2.1 Cyclization Reactions

2.2.1.1 (3 + 2) Cyclization Reactions

2.2.1.1.1 Reaction of α-Amino Ketones or α-Amino β-Keto Esters with β-Diketones or β-Keto Esters (Knorr Pyrrole Synthesis)

2.2.1.2 Reaction of α-Amino Ketones with Alkynes

2.2.1.3 Reaction of β-Amino-α,β-unsaturated Esters with Nitroalkenones

2.2.1.4 Reaction of α-Diketones with Amines

2.2.1.2 (2 + 2 + 1) Cyclization Reactions

2.2.1.2.1 Reaction of β-Keto Esters with α-Halo Ketones (Hantzsch Pyrrole Synthesis)

2.2.1.2.2 Reaction of Aldehydes or Ketones with Hydrazine (Piloty–Robinson Pyrrole Synthesis)

2.2.1.2.3 Reaction of Benzoin with Benzyl Aryl Ketones

2.2.1.2.4 Reaction of Aldehydes with Alkyl Isocyanatoacetates

2.2.1.3 (4 + 1) Cyclization Reactions

2.2.1.3.1 Reaction of 1,4-Diketones with Ammonia or Ammonia Derivatives (Paal–Knorr Synthesis)

2.2.1.3.2 Reaction of 1,4-Dienes or Diynes with Amines

2.2.2 Ring Expansion Reactions

2.2.3 Extrusion Reactions

2.3 Structure

2.4 Basicity

2.5 Reactions

2.5.1 Protonation

2.5.2 Proton Exchange

2.5.3 Electrophilic Substitution Reactions

2.5.3.1 Orientation

2.5.3.2 Nitration

2.5.3.3 Halogenation

2.5.3.3.1 Chlorination

2.5.3.3.2 Bromination

2.5.3.3.3 Iodination

2.5.3.4 Sulfonation
2.5.3.5 Acylation
 2.5.3.5.1 Houben–Hoesch Reaction
 2.5.3.5.2 Gattermann Formylation
 2.5.3.5.3 Vilsmeier–Haack Reaction
 2.5.3.5.4 Friedel–Crafts Acylation

2.5.3.6 Alkylation

2.5.3.7 Hydroxymethylation (Mannich Reaction)

2.5.3.8 Reactions with Aldehydes and Ketones

2.5.3.9 Diazo Coupling

2.5.4 Reactions on Carbon and Nitrogen Anionic Species
 2.5.4.1 Alkylation
 2.5.4.2 Acylation

2.5.5 Nucleophilic Substitution Reactions

2.5.6 Oxidation
 2.5.6.1 Autoxidation
 2.5.6.2 Photo-oxidation
 2.5.6.3 Oxidation with Chromium Trioxide
 2.5.6.4 Oxidation with Hydrogen Peroxide

2.5.7 Reduction
 2.5.7.1 Catalytic Hydrogenation
 2.5.7.2 Reduction by Metal–Acid Systems
 (Chemical Reduction)

2.5.8 Reactions with Free Radicals

2.5.9 Reactions with Electron-Deficient Species
 2.5.9.1 Reactions with Carbenes
 2.5.9.2 Reactions with Nitrenes

2.5.10 Cycloaddition Reactions
 2.5.10.1 \((4\pi + 2\pi)\) Reactions
 2.5.10.1.1 Reactions with DMAD
 2.5.10.1.2 Reactions with Benzyne
 2.5.10.1.3 Reaction with Hexafluorobicyclo-[2.2.0]hexa-2,5-diene
 2.5.10.2 \((2\pi + 2\pi)\) Reactions

3 FURANS
 3.1 General
 3.2 Synthesis
 3.2.1 Commercial Method (From Aldopentoses or Ketopentoses)
 3.2.2 From 1,4-Diketones
 3.2.3 Cyclization of Alkynes
 3.2.3.1 Photochemical Cyclization
 3.2.3.2 From Alkynyl Sulfonium Salts
 3.2.4 Cyclization of Ylides
 3.2.4.1 Sulfur Ylides
 3.2.4.2 Phosphorus Ylides
 3.2.5 From \(\alpha\)-Halocarbonyl Compounds (Feist–Benary Synthesis)
 3.2.6 Ring Expansion of Small Ring Heterocycles
3.2.6.1 Three-Membered Heterocycles 88
3.2.6.2 Four-Membered Heterocycles 89
3.2.7 Transformation of Five-Membered Heterocycles 89
3.2.8 Ring Contraction 90
3.3 Structure 91
3.4 Reactions 92
3.4.1 Reactions with Electrophiles 92
3.4.1.1 Reactivity and Orientation Effects 92
3.4.1.2 Directing Effects of Substituents 93
3.4.1.3 Protonation 94
3.4.1.4 Nitration 96
3.4.1.5 Sulfonation 97
3.4.1.6 Halogenation 98
3.4.1.7 Alkylation 100
3.4.1.8 Acylation 102
3.4.1.9 Reactions with Aldehydes and Ketones 104
3.4.1.10 Reactions with Diazonium Salts 105
3.4.2 Reactions with Nucleophiles 105
3.4.3 Reactions with Free Radicals 108
3.4.4 Reactions with Electron-Deficient Species 111
3.4.5 CycloadDITION Reactions 112
3.4.6 Photochemical Reactions 118

4 THIOPHENES 121
4.1 General 121
4.1.1 Isolation 122
4.2 Synthesis 122
4.2.1 Intramolecular Cyclization Reactions 122
4.2.1.1 From 4-Aralkylthiocrotononitriles 122
4.2.1.2 From 3-Methylenethiopenals 123
4.2.2 (4 + 1) Cyclization Reactions 124
4.2.2.1 From Hydrocarbons 124
4.2.2.2 From 1,4-Diketones (Paal Synthesis) 125
4.2.3 (3 + 2) Cyclization Reactions 126
4.2.3.1 Reaction of α,β-Unsaturated Carbonyl Compounds with Ethyl Mercaptoacetate 126
4.2.3.2 Reaction of Activated Alkynes with α-Mercapto Ketones or Esters 127
4.2.3.3 Reaction of Dimethyl Fumarate with Mercapto Esters 128
4.2.3.4 Reaction of α-Mercapto Ketones with Activated Methylene Nitriles (Gewald Synthesis) 129
4.2.3.5 Reaction of α-Diketones with Activated Methylene Compounds (Hinsberg Synthesis) 129
4.2.3.6 Reaction of Alkynes with Mesoionic Heterocycles 131
4.2.4 (2 + 2 + 1) Cyclization Reactions 131
4.3 Structure 132
4.4 Reactions

4.4.1 Reactions with Electrophiles

4.4.1.1 Electrophilic Substitutions at Carbon

4.4.1.1.1 Orientation
4.4.1.1.2 Directing Effects of Substituents
 4.4.1.1.2.1 Substituents at Carbon-2
 4.4.1.1.2.2 Substituents at Carbon-3

4.4.1.1.3 Protonation
4.4.1.1.4 Nitration
4.4.1.1.5 Sulfonation
4.4.1.1.6 Halogenation
 4.4.1.1.6.1 Chlorination
 4.4.1.1.6.2 Bromination
 4.4.1.1.6.3 Iodination

4.4.1.1.7 Alkylation
4.4.1.1.8 Acylation

4.4.1.1.9 Reactions with Aldehydes and Ketones

4.4.1.1.10 Mercuration
4.4.1.1.11 Reactions with Diazonium Salts

4.4.1.2 Electrophilic Attack on Sulfur

4.4.2 Reactions with Oxidizing Agents

4.4.2.1 Formation of Thiophene Sulfoxides and Sulfoones
4.4.2.2 Oxidative Ring Cleavage
4.4.2.3 Oxidation by Metal Ions

4.4.3 Reactions with Nucleophiles

4.4.3.1 Nucleophilic Attack at Carbon
 4.4.3.1.1 Nucleophilic Substitutions
 4.4.3.1.2 Halogen–Metal Exchange

4.4.3.2 Nucleophilic Attack at Hydrogen
 4.4.3.2.1 Lithiation

4.4.3.3 Nucleophilic Ring Opening Reactions

4.4.4 Reactions with Reducing Agents

4.4.4.1 Catalytic Reduction
4.4.4.2 Birch Reduction
4.4.4.3 Reductive Desulfurization

4.4.5 Reactions with Free Radicals

4.4.6 Reactions with Electron-Deficient Species

4.4.6.1 Reactions with Carbenes
4.4.6.2 Reactions with Nitrenes

4.4.7 Cycloaddition Reactions

4.4.7.1 Thermal [4 + 2] Cycloaddition Reactions
4.4.7.2 Thermal [2 + 2] Cycloaddition Reactions
4.4.7.3 Photocycloaddition Reactions

4.4.8 Photosubstitution

4.4.9 Photoisomerization
CHAPTER 3

BENZO-FUSED FIVE-MEMBERED HETEROCYCLES WITH ONE HETEROATOM

CONTENTS

1 GENERAL
1.1 Reactivity
1.2 Orientation
1.3 Dibenzo[1,2-b:4,5-b']dithiophenes
2 BENZOPYRROLES
2.1 Indoles
2.1.1 General
2.1.2 Synthesis
2.1.2.1 Reaction of o-Nitrotoluene with Diethyl Oxalate (Reissert Indole Synthesis)
2.1.2.2 From o-Nitrophenyl Nitroethylene (o,o-Dinitrostyrene)
2.1.2.3 Palladium-Catalyzed Cyclization
2.1.2.4 Madelung Indole Synthesis
2.1.2.5 Isonitrile Cyclization
2.1.2.6 Bischler Indole Synthesis
2.1.2.7 Fischer Indole Synthesis
2.1.2.8 Gassman Indole Synthesis
2.1.2.9 Neitzescu Indole Synthesis
2.1.2.10 From Pyrroles
2.1.2.11 From Azirines
2.1.3 Structure
2.1.4 Reactions

187
188
188
189
190
191
191
194
194
195
196
196
197
198
199
203
203
206
207
208
208
2.1.4.1 Reactions with Electrophiles
 2.1.4.1.1 Protonation
 2.1.4.1.1.1 Reaction with Proton Acids
 2.1.4.1.1.2 Basicity
 2.1.4.1.1.3 H ↔ D Exchange
 2.1.4.1.1.4 Dimerization and Trimerization
 2.1.4.1.2 Nitration
 2.1.4.1.3 Nitrosation
 2.1.4.1.4 Halogenation
 2.1.4.1.4.1 Chlorination
 2.1.4.1.4.2 Bromination
 2.1.4.1.4.3 Iodination
 2.1.4.1.5 Sulfonation
 2.1.4.1.6 Acylation
 2.1.4.1.6.1 Friedel–Crafts Acylation
 2.1.4.1.6.2 Vilsmeier–Haack Formylation
 2.1.4.1.7 Alkylation
 2.1.4.1.8 Reactions with Aldehydes and Ketones
 2.1.4.1.8.1 Ehrlich Test
 2.1.4.1.8.2 With Aromatic Aldehydes and Ketones
 2.1.4.1.8.3 With Aliphatic Aldehydes and Ketones
 2.1.4.1.8.4 With α,β-Unsaturated Ketones
 2.1.4.1.9 Mannich Reaction
 2.1.4.2 Reactions on Carbon and Nitrogen Anionic Species
 2.1.4.2.1 Alkylation
 2.1.4.2.2 Acylation
 2.1.4.3 Reactions with Nucleophiles
 2.1.4.4 Oxidation
 2.1.4.5 Reduction
 2.1.4.6 Reactions with Electron-Deficient Species
 2.1.4.7 Reactions with Free Radicals
 2.1.4.8 CycloadDITION Reactions

2.2 Isoindoles (Benzoc[\text{c}pyrroles])
 2.2.1 General
 2.2.2 Synthesis
 2.2.2.1 Cyclization Reactions
 2.2.2.1.1 From α-Bromo-\text{o}-toluic Acid
 2.2.2.1.2 From N-Cyanomethyl-N-methyl-\text{o}-chlorobenzylamine
2.2.2.1.3 From 1,4-Diketones 243
2.2.2.2 Extrusion Reaction 243
2.2.2.3 Ring Transformation Reactions 244
 2.2.2.3.1 From Phthalimidines 244
 2.2.2.3.2 From Isoindolines 245
 2.2.2.3.3 From Pyrroles 247
2.2.3 Reactions 247
 2.2.3.1 Reactions with Electrophiles 247
 2.2.3.1.1 Protonation 248
 2.2.3.1.2 Nitrosation 249
 2.2.3.1.3 Acylation 249
 2.2.3.1.4 Alkylation 249
 2.2.3.1.5 Formylation 250
 2.2.3.1.6 Reactions with Aldehydes and Ketones (Ehrlich Test) 250
 2.2.3.2 Oxidation 251
 2.2.3.3 Reduction 252
 2.2.3.4 Cycloaddition Reactions 253
2.3 Indolizines (Pyrrocolines) 254
 2.3.1 General 254
 2.3.2 Synthesis 255
 2.3.2.1 Reaction of Pyridines with α-Halocarbonyl Compounds (Tschitschibabin Reaction) 255
 2.3.2.2 Reaction of Pyridine with Alkynic Compounds 257
 2.3.2.3 Reaction of 2-Pyridyllithium with 2-Chloromethylxirane 258
 2.3.2.4 1,3-Dipolar Cycloaddition Reactions 258
 2.3.3 Structure 259
 2.3.4 Reactions 260
 2.3.4.1 Reactions with Electrophiles 260
 2.3.4.1.1 Protonation 261
 2.3.4.1.2 Nitrination 262
 2.3.4.1.3 Nitrosation 262
 2.3.4.1.4 Alkylation 263
 2.3.4.1.5 Acylation 264
 2.3.4.1.6 Reactions with Aldehydes and Ketones 264
 2.3.4.2 Oxidation 264
 2.3.4.3 Reduction 265
 2.3.4.4 Cycloaddition Reactions 266
2.4 Carbazoles (Dibenzopyrroles) 267
 2.4.1 General 267
 2.4.2 Synthesis 268
2.4.2.1 From Cyclohexanone Phenylhydrazones 268
(Borsche Synthesis or Modified Fischer Indole Synthesis)

2.4.2.2 Reaction of Anilines with α-Halocyclohexanones 268

2.4.2.3 From Diarylamines 269
2.4.2.3.1 Oxidative Cyclization 269
2.4.2.3.2 Photochemical Cyclization 270

2.4.2.4 Reductive Cyclization of α-Nitrobenzenes 271
2.4.2.5 From α-Azidobenzenes 271
2.4.2.6 From 1-Arylbenzotriazoles 272
(Graebe–Ullmann Synthesis)

2.4.2.7 Nenitzescu Reaction 272
2.4.2.8 Annelation of Indoles 272

2.4.3 Structure 273

2.4.4 Reactions 274
2.4.4.1 Reactions with Electrophiles 274
2.4.4.1.1 Protonation 274
2.4.4.1.2 Nitration 275
2.4.4.1.3 Nitrosation 275
2.4.4.1.4 Chlorination 276
2.4.4.1.5 Bromination 276
2.4.4.1.6 Sulfonation 276
2.4.4.1.7 Acylation 277

2.4.4.2 Oxidation 278
2.4.4.3 Reduction 278
2.4.4.4 Reactions with Nucleophiles 279

3 BENZOFURANS 279

3.1 General 279

3.2 Benzo[b]furans 282
3.2.1 Synthesis 282
3.2.1.1 Intramolecular Cyclization of α-Substituted Phenols 282
3.2.1.2 Cyclodehydration of α-Aryloxyketones 283
3.2.1.3 Reaction of α-Acylphenols with α-Halo Ketones and Esters 284
3.2.1.4 Reaction of α-Acylphenols with Dimethylsulfonoxonium Methylide 285
3.2.1.5 From p-Benzoquinones 286
3.2.1.6 Ring Contraction (From Coumarins) 287

3.2.2 Structure 287
3.2.3 Reactions 288
3.2.3.1 Reactions with Electrophiles 288
3.2.3.1.1 Reactivity and Orientation 288
3.2.3.1.2 Directing Effects of Substituents 289
3.2.3.1.3 Protonation 289
3.2.3.1.4 Nitrification 289
3.2.3.1.5 Sulfonation 291
3.2.3.1.6 Halogenation 291
 3.2.3.1.6.1 Bromination 292
 3.2.3.1.6.2 Chlorination 293
3.2.3.1.7 Acylation 293
3.2.3.1.8 Alkylation 294
3.2.3.1.9 Reaction with Diazonium Salts 295
3.2.3.2 Reactions with Nucleophiles 295
3.2.3.3 Oxidation 297
3.2.3.4 Reduction 298
3.2.3.5 Reactions with Electron-Deficient Species 299
3.2.3.6 Cycloaddition Reactions 300
3.2.3.7 Photochemical Reactions 300
 3.2.3.7.1 Photodimerization 300
 3.2.3.7.2 Photosensitized Cycloaddition 301
3.2.3.7.3 Photooxygenation 301

3.3 Benzo[c]furan
3.3.1 General 302
3.3.2 Synthesis 302
 3.3.2.1 Retro-Diels–Alder Reaction 302
 3.3.2.2 Reductive Cyclization of o-Dibenzoylbenzenes 303
 3.3.2.3 Reaction of Dibenzoylacetylene with Dienes 303
 3.3.2.4 From Benzophenones 304
3.3.3 Reactions 305
 3.3.3.1 Cycloaddition Reactions 305
 3.3.3.2 Photochemical Reactions 307
 3.3.3.2.1 Photodimerization 307
 3.3.3.2.2 Photocycloaddition 307
 3.3.3.2.2.1 With Cycloheptatriene 307
 3.3.3.2.2.2 With Cyclohexadiene 308
 3.3.3.2.3 Photooxygenation 308
 3.3.3.3 Oxidation 309
 3.3.3.4 Reduction 309

3.4 Dibenzofurans 309
3.4.1 General 309
3.4.2 Synthesis 310
 3.4.2.1 From 2,2'-Dihydroxybiphenyls 310
 3.4.2.2 From Diphenyl Ethers 310
 3.4.2.3 From o-Aminodiphenyl Ethers (Pschorr Type Cyclization) 311
 3.4.2.4 Wittig Reaction 312
3.4.3 Reactions 312
3.4.3.1 Reactions with Electrophiles
 3.4.3.1.1 Bromination
 3.4.3.1.2 Nitrification
 3.4.3.1.3 Formylation
 3.4.3.1.4 Sulfonation

3.4.3.2 Metallation (Lithiation)

3.4.3.3 Reactions with Nucleophiles

3.4.3.4 Reduction

4 BENZOTHIOPHENES

4.1 General

4.2 Benzo[b]thiophenes
 4.2.1 General
 4.2.2 Synthesis
 4.2.2.1 Oxidative Cyclization of Mercaptocinnamic Acids
 4.2.2.2 Reaction of Cinnamic Acid with Thionyl Chloride
 4.2.2.3 Dehydrative Cyclization
 4.2.2.3.1 From Arylthioacetaldehyde Acetals
 4.2.2.3.2 From Arylthio Methyl Ketones
 4.2.2.4 Reaction of Mercaptoaldehyde or Acid with
 \(\alpha \)-Halo Acids or Ketones
 4.2.2.5 From Benzenethiols (Thiophenols)
 4.2.2.6 From Thiophene-2,3-dicarboxylic Anhydride

4.2.3 Reactions
 4.2.3.1 Reactions with Electrophiles
 4.2.3.1.1 Electrophilic Attack at Carbon
 4.2.3.1.1.1 Orientation
 4.2.3.1.1.2 Directing Effects of
 Substituents
 4.2.3.1.1.3 Nitration
 4.2.3.1.1.4 Halogenation
 4.2.3.1.1.5 Sulfonation
 4.2.3.1.1.6 Alkylation
 4.2.3.1.1.7 Acylation
 4.2.3.1.1.8 Diazoc Coupling
 4.2.3.1.2 Electrophilic Attack at Sulfur

4.2.3.2 Reactions with Oxidizing Agents
 4.2.3.2.1 Formation of 1-Oxides and 1,1-Dioxides
 4.2.3.2.2 Oxidative Ring Opening

4.2.3.3 Reactions with Nucleophiles
 4.2.3.3.1 Metallation
 4.2.3.3.2 Ring Opening by Nucleophiles
 4.2.3.3.3 Addition of Nucleophiles

4.2.3.4 Reactions with Reducing Agents
4.2.3.5 Reactions with Carbenes 336
4.2.3.6 Cycloaddition Reactions 337
 4.2.3.6.1 Thermal (2 + 2) Cycloaddition Reactions 337
 4.2.3.6.2 Photochemical (2 + 2) Cycloaddition Reactions 337
4.2.3.7 Photosubstitution 338

4.3 Benzo[c]thiophenes 339
 4.3.1 General 339
 4.3.2 Synthesis 339
 4.3.2.1 From 1,4-Diketones 339
 4.3.2.2 From o-Bis (chloromethyl) benzene 340
 4.3.2.3 Ring Contraction of 1,2-Dithiins 341
 4.3.2.4 Annelation of Thiophenes 341
 4.3.3 Reactions 341
 4.3.3.1 Cycloaddition Reactions 341
 4.3.3.2 Oxidative Ring Opening Reactions 342

4.4 Dibenzothiophenes 343
 4.4.1 General 343
 4.4.2 Synthesis 344
 4.4.2.1 Oxidative Cyclization of Diphenyl Sulfides 344
 4.4.2.2 Reductive Cyclization of Diphenyl Sulfoxide 344
 4.4.2.3 From Biphenyls 344
 4.4.2.4 From Diphenyl sulfones 345
 4.4.2.5 From 2-Allylbenzo[b]thiophenes 345
 4.4.3 Reactions 346
 4.4.3.1 Reactions with Electrophiles 346
 4.4.3.2 Reactions with Nucleophiles 346
 4.4.3.3 Oxidation 347

REFERENCES 347
CHAPTER 4

FIVE-MEMBERED HETEROCYCLES WITH TWO HETEROATOMS

CONTENTS

1 GENERAL 363
 1.1 Structures 364
 1.2 Basicity 365
 1.3 Structure versus Chemical Reactivity (Consequences of Additional Nitrogen Atom)
 1.3.1 Reactions with Electrophiles 367
 1.3.1.1 Electrophilic Attack at Carbon 367
 1.3.1.1.1 Orientation 367
 1.3.1.1.2 1,3-Azoles 368
 1.3.1.1.2 1,2-Azoles 369
 1.3.1.2 Electrophilic Attack at Nitrogen-3 370
 1.3.2 Reactions with Nucleophiles 371
 1.3.2.1 Nucleophilic Attack at Carbon 371
 1.3.2.2 Nucleophilic Attack at Hydrogen (Deprotonation) 372

2 1,3-AZOLES 374
 2.1 Imidazoles 375
 2.1.1 General 375
 2.1.2 Synthesis 377
 2.1.2.1 Reaction of α-Hydroxy- or α-Halo Ketones with Amidines 377
 2.1.2.2 Reaction of α-Amino Ketones with Cyanates, Thiocyanates or Isothiocyanates (Marckwald Synthesis) 378
2.1.2.3 Reaction of α-Diketones, α-Hydroxy-, α-Halo- or α-Amino Ketones with Formamide (Formamide Synthesis) 378
2.1.2.4 Reaction of Oxamide with Phosphorus Oxychloride (Wallach Synthesis) 379
2.1.2.5 Reaction of Arylaldoximes with Propiolate Ester 380
2.1.2.6 Reaction of 1,2-Diaminoalkanes with Carboxylic Acids and Aldehydes or Ketones 380
2.1.2.7 Ring Trasformation (From Oxazoles) 381
2.1.2.8 Ring Contraction (From Pyrazines) 381

2.1.3 Structure

2.1.3.1 Hydrogen Bonding 382
2.1.3.2 Tautomerism 383

2.1.4 Reactions

2.1.4.1 Reactivity 384

2.1.4.2 Reactions with Electrophiles 385
 2.1.4.2.1 Electrophilic Attack at Nirtogen 385
 2.1.4.2.1.1 Protonation (Basicity) 385
 2.1.4.2.1.2 N-Alklylation 386
 2.1.4.2.1.3 N-Acylation 387
 2.1.4.2.2 Electrophilic Attack at Carbon 388
 2.1.4.2.2.1 Orientation 388
 2.1.4.2.2.2 Nitration 389
 2.1.4.2.2.3 Sulfonation 390
 2.1.4.2.2.4 Halogenation 390
 2.1.4.2.2.5 Acylation 391
 2.1.4.2.2.6 Diazo Coupling 392
 2.1.4.2.2.7 Reactions with Aldehydes and Ketones 393
 2.1.4.2.2.8 Oxidation 394

2.1.4.3 Reactions with Nucleophiles 394
 2.1.4.3.1 Nucleophilic Attack at Carbon 394
 2.1.4.3.2 Nucleophilic Attack at Hydrogen (Deprotonation) 396
 2.1.4.3.2.1 Deprotonation of NH (Acidity) 396
 2.1.4.3.2.2 Deprotonation of Carbon-2 396
 2.1.4.3.2.2.1 H \rightarrow D 397
 Exchange
 2.1.4.3.2.2.2 Metallation 397
 2.1.4.3.2.2.3 C-Acylation via Deprotonation 398

2.1.4.4 Reactions with Electron-Deficient Species 398
2.1.4.5 Reactions with Dienophiles 399
2.1.4.6 Photochemical Cycloaddition Reactions 399
2.2 Oxazoles

2.2.1 General

2.2.2 Synthesis

2.2.2.1 Cyclodehydration of α-Acylamino Ketones (Robinson–Gabriel Synthesis)

2.2.2.2 Reaction of α-Halo Ketones with Primary Amides (Blümlein–Lewy Synthesis)

2.2.2.3 Reaction of α-Hydroxyamino Ketones with Aldehydes

2.2.2.4 Reaction of Tosylmethyl Isocyanide with Aldehydes

2.2.2.5 Reaction of α-Metallated Isocyanides with Acid Derivatives

2.2.2.6 Ring Transformations

2.2.2.6.1 From C-Acylaziridines

2.2.2.6.2 From Isoxazoles (Isomerization)

2.2.3 Structure

2.2.4 Reactions

2.2.4.1 Reactivity

2.2.4.2 Reactions with Electrophiles

2.2.4.2.1 Electrophilic Attack at Nitrogen

2.2.4.2.1.1 Protonation (Basicity)

2.2.4.2.1.2 N-Alkylation

2.2.4.2.2 Electrophilic Attack at Carbon

2.2.4.2.2.1 Bromination

2.2.4.2.2.2 Mercuration

2.2.4.2.2.3 Vilsmeier–Haack Formylation

2.2.4.3 Reactions with Nucleophiles

2.2.4.3.1 Nucleophilic Attack at Carbon

2.2.4.3.2 Nucleophilic Attack at Hydrogen

2.2.4.3.2.1 Metallation

2.2.4.3.2.2 H ↔ D Exchange

2.2.4.4 Thermal Reactions (Cornforth Rearrangement)

2.2.4.5 Photochemical Reactions

2.2.4.6 Cycloaddition Reactions

2.2.4.7 Photooxygenation

2.3 Thiazoles

2.3.1 General

2.3.2 Synthesis

2.3.2.1 Synthesis of Thiazoles

2.3.2.1.1 Reaction of α-halo Ketones with Thioamides (Hantzsch’s Synthesis)

2.3.2.1.2 Reaction of α-Acylamino Ketones with Phosphorus Pentasulfide (Gabriel Synthesis)
2.3.2.1.3 From α-Aminonitriles 418
 (Cook–Heilborn's Synthesis)
2.3.2.1.4 From α-Thiocyano Ketones 419
 (Tcherniac's Synthesis)
2.3.2.1.5 Reaction of α-Mercapto Ketones 419
 or α-Mercapto Acids with Nitriles
2.3.2.2 Synthesis of Benzothiazoles 421
 2.3.2.2.1 Synthesis from α-Aminothiophenols 421
 (2-Aminobenzenethiols)
 2.3.2.2.1.1 Reaction with Aldehydes 421
 2.3.2.2.1.2 Reaction with 1,2-Diketones 421
 2.3.2.2.1.3 Reaction with Acids and 422
 Acid Derivatives
2.3.2.2.2 From Arylthioureas (Hugershoff's Method) 422
2.3.3 Structure 422
2.3.4 Reactions 423
 2.3.4.1 Reactions with Electrophiles 423
 2.3.4.1.1 Electrophilic Attack at Nitrogen 423
 2.3.4.1.1.1 Basicity 424
 2.3.4.1.1.2 N-Alkylation (Reaction 424
 with Alkyl Halides)
 2.3.4.1.2 Electrophilic Attack at Carbon 425
 2.3.4.1.2.1 Nitration 425
 2.3.4.1.2.2 Sulfonation 425
 2.3.4.1.2.3 Halogenation 426
 2.3.4.1.2.4 Alkylation 427
 2.3.4.1.2.5 Mercuration 427
 2.3.4.1.2.6 Diazoc Coupling 427
 2.3.4.2 Condensation Reactions 428
2.3.4.3 Oxidation 429
2.3.4.4 Desulfurization 430
2.3.4.5 Reactions with Nucleophiles 430
 2.3.4.5.1 Nucleophilic Attack at Carbon 430
 2.3.4.5.1.1 Amination 430
 2.3.4.5.1.2 Ring Cleavage 431
 2.3.4.5.1.3 Displacement of Halide 431
 2.3.4.5.1.4 Metal–Halogen Exchange 432
 2.3.4.5.2 Nucleophilic Attack at Hydrogen 432
 2.3.4.5.2.1 Metallation 432
 2.3.4.5.2.2 H → D Exchange 433
2.3.4.6 Photochemical Rearrangements 434
3 1,2-AZONES 435
 3.1 Pyrazoles 435
 3.1.1 General 435
 3.1.2 Synthesis 436
3.1.2.1 (3 + 2) Cyclization Reactions 436
 3.1.2.1.1 Reaction of β-Diketones with Hydrazines 436
 3.1.2.1.2 Reaction of α,β-Unsaturated Carbonyl Compounds with Hydrazines 437

3.1.2.2 1,3-Dipolar Cycloadditions 439

3.1.3 Structure 440
 3.1.3.1 Hydrogen bonding 441
 3.1.3.2 Tautomerism 441

3.1.4 Reactions 442
 3.1.4.1 Reactivity 442
 3.1.4.2 Electrophilic Attack at Nitrogen 443
 3.1.4.2.1 Basicity 443
 3.1.4.2.2 Acidity 443
 3.1.4.2.3 N-Alkylation 443
 3.1.4.2.4 N-Acylation 443
 3.1.4.2.5 Michael Addition 445
 3.1.4.3 Electrophilic Attack at Carbon 445
 3.1.4.3.1 Reactivity and Orientation 445
 3.1.4.3.2 Nitration 447
 3.1.4.3.3 Sulfonation 448
 3.1.4.3.4 Halogenation 449
 3.1.4.3.5 Mercuration 449
 3.1.4.3.6 Diazoc Coupling 450
 3.1.4.4 Oxidation 450
 3.1.4.5 Reduction 451
 3.1.4.6 Reactions with Nucleophiles 451
 3.1.4.6.1 Nucleophilic Attack at Carbon 451
 3.1.4.6.2 Nucleophilic Attack at Hydrogen 452
 3.1.4.6.2.1 Metallation 452
 3.1.4.6.2.2 Ring Cleavage via Deprotonation 452
 3.1.4.7 Reactions with Electron-Deficient Species 453
 3.1.4.8 Cycloaddition Reactions 453
 3.1.4.9 Photochemical Transformation 454

3.2 Isoxazoles 455
 3.2.1 General 455
 3.2.2 Synthesis 458
 3.2.2.1 Reaction of β-Diketones with Hydroxylamine 458
 3.2.2.2 Reaction of Nitrile N-Oxides with Alkenes and Alkynes 459

3.2.3 Reactions 460
 3.2.3.1 Reactivity 460
 3.2.3.2 Reactions with Electrophiles 461
 3.2.3.2.1 Electrophilic Attack at Nitrogen 461
 3.2.3.2.1.1 Basicity 461
3.2.3.2.1.2 N-Alkylation 461
3.2.3.2.2 Electrophilic Attack at Carbon 461
3.2.3.2.2.1 H → D Exchange 462
3.2.3.2.2.2 Nitration 463
3.2.3.2.2.3 Sulfonation 464
3.2.3.2.2.4 Halogenation 465
3.2.3.2.2.5 Chloromethylation and Hydroxymethylation 466
3.2.3.2.2.6 Mercuration 466
3.2.3.3 Oxidation 467
3.2.3.4 Reactions with Nucleophiles 468
3.2.3.4.1 Nucleophilic Displacement 468
3.2.3.4.2 Ring Cleavage via C-Deprotonation 468
3.2.3.4.3 Reductive Ring Cleavage 471
3.2.3.5 Condensation Reactions 471
3.2.3.6 Rearrangement 472
3.2.3.7 Photochemical and Thermal Reactions 472

3.3 Isothiazoles 473
3.3.1 General 473
3.3.2 Synthesis 474
3.3.2.1 Oxidative Cyclization of γ-Iminothiols 474
3.3.2.2 Ring Transformation 475
3.3.2.3 From Alkenes 476
3.3.2.4 From α,β-Unsaturated Carbonyl Compounds 476
3.3.3 Structure 477
3.3.4 Reactions 478
3.3.4.1 Reactions with Electrophiles 478
3.3.4.1.1 Nitration 478
3.3.4.1.2 Sulfonation 479
3.3.4.1.3 N-Alkylation 479
3.3.4.2 Side Chain Reactivity 480
3.3.4.2.1 Reaction with Aromatic Aldehydes 480
3.3.4.2.2 Decarboxylation 480
3.3.4.3 Reactions with Nucleophiles 480
3.3.4.3.1 Nucleophilic Substitutions 480
3.3.4.3.2 Ring Transformation 481
3.3.4.3.3 Lithiation 482
3.3.4.3.4 Ring Cleavage 482
3.3.4.4 Photochemical Transformation 482
3.3.4.5 Oxidation 483

REFERENCES 483
CHAPTER 5

FIVE-MEMBERED HETEROCYCLES WITH MORE THAN TWO HETEROATOMS

CONTENTS

1 GENERAL 491
 1.1 Effects of Additional Nitrogen Atoms 492
2 TRIAZOLES AND TETRAZOLES 492
 2.1 1,2,3-Triazoles 492
 2.1.1 General 492
 2.1.2 Synthesis 493
 2.1.2.1 Oxidative Cyclization of bis-Hydrazones of \alpha-Diketones 493
 2.1.2.2 Cycloaddition of Azides with Alkynes 494
 2.1.3 Reactions 495
 2.1.3.1 Amphoteric Nature 495
 2.1.3.2 Electrophilic Substitutions 496
 2.1.3.2.1 Alkylation 497
 2.1.3.2.2 Acylation 498
 2.1.3.2.3 Bromination 498
 2.1.3.3 Thermal and Photochemical Reactions 499
 2.1.3.4 Dimroth Rearrangement 501
 2.1.3.5 Ring Cleavage Reactions 502
 2.2 1,2,4-Triazoles 503
 2.2.1 General 503
 2.2.2 Synthesis 504
 2.2.2.1 From Hydrazine Derivatives 504
 2.2.2.2 From Nitrilimines 505
 2.2.3 Structure 506
2.2.4 Reactions
 2.2.4.1 Acidity–Basicity
 2.2.4.2 Reactivity
 2.2.4.2.1 Reactions with Electrophiles
 2.2.4.2.1.1 Electrophilic Attack at Nitrogen
 2.2.4.2.1.2 Quaternization
 2.2.4.2.1.3 Electrophilic Attack at Carbon
 2.2.4.2.2 Reactions with Nucleophiles
 2.2.4.2.3 Reactions with Electron-Deficient Species
 2.2.4.2.3.1 Reactions with Nitrenes
 2.2.4.2.3.2 Reactions with Carbenes
 2.2.4.2.4 Oxidation
 2.2.4.2.5 Thermal and Photochemical Reactions

2.3 Tetrazoles
 2.3.1 General
 2.3.2 Synthesis
 2.3.2.1 From Imidoyl Chlorides
 2.3.2.2 From Amidrazones
 2.3.2.3 From Nitriles
 2.3.2.4 From Nitrilium Salts
 2.3.2.5 From Isonitriles
 2.3.3 Structure
 2.3.3.1 Hydrogen Bonding
 2.3.4 Reactions
 2.3.4.1 Reactions with Electrophiles
 2.3.4.2 Reactions with Nucleophiles
 2.3.4.2.1 Nucleophilic Attack at Hydrogen
 2.3.4.2.1.1 Acidity
 2.3.4.2.1.2 H → D Exchange
 2.3.4.2.1.3 Metallation
 2.3.4.2.2 Nucleophilic Attack at C-5
 (Nucleophilic Substitutions)
 2.3.4.3 Thermal and Photochemical Reactions
 2.3.4.3.1 Reactions Involving Nitrilimine Intermediates
 2.3.4.3.2 Reactions Involving Carbene Intermediates
 2.3.4.3.3 Reactions involving Nitrene Intermediates
 2.3.4.4 Rearrangements

3 OXADIAZOLES
 3.1 1,2,3-Oxadiazoles
 3.2 1,2,4-Oxadiazoles
 3.2.1 General
 3.2.2 Synthesis
 3.2.2.1 Cyclization Reactions (From Amidoximes)
3.2.2.2 1,3-Dipolar Cycloadditions 528
3.2.3 Structure 529
3.2.4 Reactions 529
 3.2.4.1 Electrophilic Substitution Reactions 529
 3.2.4.2 Nucleophilic Substitution Reactions 530
 3.2.4.3 Reactions of Substituents 530
 3.2.4.4 Reduction 531
 3.2.4.5 Ring Cleavage via C-Deprotonation 532
 3.2.4.6 Photochemical Reactions 532
 3.2.4.7 Rearrangements 533

3.3 1,2,5-Oxadiazoles 533
 3.3.1 General 533
 3.3.2 Synthesis 534
 3.3.2.1 Furazans 534
 3.3.2.1.1 Dehydration of α-Dioximes 534
 3.3.2.1.2 Ring Transformations 534
 3.3.2.2 Furoxans 535
 3.3.2.2.1 Oxidation of α-Dioximes 535
 3.3.2.2.2 Dehydration of α-Nitro Ketone Oximes 536
 3.3.3 Structure 536
 3.3.4 Reactions 537
 3.3.4.1 Reactions with Electrophiles 537
 3.3.4.2 Reactions with Nucleophiles 537
 3.3.4.3 Ring Cleavage via C-Deprotonation 538
 3.3.4.4 Rearrangements 539
 3.3.4.5 Thermal and Photochemical Reactions 539

3.4 1,3,4-Oxadiazoles 540
 3.4.1 General 540
 3.4.2 Synthesis 541
 3.4.2.1 From Diacylhydrazines 541
 3.4.2.2 Ring Transformation 541
 3.4.3 Structure 542
 3.4.4 Reactions 543
 3.4.4.1 Reactions with Electrophiles 543
 3.4.4.2 Reactions with Nucleophiles 544
 3.4.4.2.1 Nucleophilic Substitution Reactions 544
 3.4.4.2.2 Nucleophilic Attack with Ring Cleavage 545
 3.4.4.3 Thermal and Photochemical Reactions 546

4 THIADIAZOLES 547
 4.1 1,2,3-Thiadiazoles 547
 4.1.1 General 547
 4.1.2 Synthesis 547
 4.1.2.1 Pachmann and Nold Synthesis 547
 4.1.2.2 Hurd–Mori’s Classical Synthesis 548
 (From Hydrazones) 548
4.1.3 Structure

4.1.4 Reactions

4.1.4.1 Reactions with Electrophiles

4.1.4.1.1 Electrophilic Attack at Nitrogen

4.1.4.2 Reactions with Nucleophiles

4.1.4.2.1 Nucleophilic Substitutions

4.1.4.2.2 Ring Cleavage via C-Deprotonation

4.1.4.2.3 Nucleophilic Attack at Sulfur

4.1.4.3 Oxidation

4.1.4.4 Thermal and Photochemical Reactions

4.1.4.4.1 Thermal Reactions

4.1.4.4.2 Photochemical Reactions

4.1.4.4.3 Rearrangements

4.2 1,2,4-Thiadiazoles

4.2.1 General

4.2.2 Synthesis

4.2.2.1 Oxidative Cyclization of Thioacrylamidines

4.2.2.2 From Amidines

4.2.2.3 Heterocyclic Ring Transformations

(Oxazole and Oxadiazole Rearrangements)

4.2.3 Structure

4.2.4 Reactions

4.2.4.1 Reactivity

4.2.4.2 Reactions with Electrophiles

4.2.4.3 Reactions with Nucleophiles

4.2.4.3.1 Nucleophilic Substitution Reactions

4.2.4.3.2 Ring Cleavage

4.2.4.3.2.1 Nucleophilic Attack at Carbon

4.2.4.3.2.2 Nucleophilic Attack at Sulfur

4.2.4.3.3 Nucleophilic Attack at Hydrogen

4.2.4.4 Reduction

4.3 1,2,5-Thiadiazoles

4.3.1 General

4.3.2 Synthesis

4.3.2.1 From o-Diamines [(4 + 1) Cyclization]

4.3.3 Structure

4.3.4 Reactions

4.3.4.1 Stability

4.3.4.2 Reactions with Electrophiles

4.3.4.3 Reactions with Nucleophiles

4.4 1,3,4-Thiadiazoles

4.4.1 General

4.4.2 Synthesis
4.4.2.1 From Thiosemicarbazides 567
4.4.2.2 From Dimethylformamide 568
4.4.2.3 From Hydrazine 568
4.4.3 Structure 569
4.4.4 Reactions 569
 4.4.4.1 Reactivity 569
 4.4.4.2 Reactions with Electrophiles 569
 4.4.4.2.1 Electrophilic Attack at Nitrogen (Quaternization) 569
 4.4.4.2.2 Electrophilic Attack at Carbon 570
 4.4.4.3 Reactions with Nucleophiles 570
 4.4.4.3.1 H \rightleftharpoons D Exchange 570
 4.4.4.3.2 Ring Cleavage via C-Deprotonation 570
 4.4.4.3.3 Amination 571
 4.4.4.3.4 Nucleophilic Substitutions 571
 4.4.4.4 Reactions Involving Ring Formation 572

REFERENCES
CHAPTER 6

MESO-IONIC HETEROCYCLES

CONTENTS
1 GENERAL 581
2 CLASSIFICATION 583
3 CHEMISTRY OF MESO-IONIC HETEROCYCLES 584
 3.1 Chemistry of Meso-Ionic Heterocycles of Type-A 584
 3.1.1 1,3-Oxazolium-4-olates 585
 3.1.1.1 Synthesis 585
 3.1.1.1 From α-Diazoimides (Diazoketones) 585
 3.1.1.2 From Imides 585
 3.1.1.2 Reactions 585
 3.1.2 1,3-Oxazolium-5-olates (Münchnones) 587
 3.1.2.1 Synthesis 587
 3.1.2.1.1 From N-Acylamino Acids 587
 3.1.2.2 Reactions 588
 3.1.2.2.1 Cycloaddition Reactions 588
 3.1.2.2.1.1 Reactions with Alkenes and Related Compounds 588
 3.1.2.2.1.2 Reactions with Alkynes 592
 3.1.2.2.1.3 Reactions with Carbonyl Compounds 593
 3.1.2.2.1.4 Reaction with Carbon Disulfide 594
 3.1.2.2.1.5 Reactions with Isothiocyanates and Isocyanates 594
 3.1.2.2 Reactions with Nucleophiles 595
3.1.2.2.3 Reactions with Small Ring Heterocycles 596
3.1.2.2.4 Photochemical Reactions 596

3.1.3 1,3-Oxathioliurn-4-olates 597
3.1.3.1 Synthesis 597
3.1.3.2 Reactions 598

3.1.4 1,3-Oxathioliurn-5-olates 598
3.1.4.1 Synthesis 599
3.1.4.2 Reactions 599

3.1.5 1,3-Diazoliurn-4-olates 600
3.1.5.1 Synthesis 600
3.1.5.1.1 From Amino Amides 600
3.1.5.1.2 From Amidines 600
3.1.5.1.3 From 1,3-Oxazioliurn-5-olates 601
3.1.5.2 Reactions 601

3.1.6 1,3-Diazoliurn-4-aminides 601
3.1.6.1 Synthesis 602
3.1.6.2 Reactions 603

3.1.7 1,3-Dithioliurn-4-olates 604
3.1.7.1 Synthesis 604
3.1.7.1.1 From Dithioglycolic Acids 604
3.1.7.1.2 From Dithiobenzoic Acids 605
3.1.7.2 Reactions 605
3.1.7.2.1 Cycloaddition with Alkynes 606
3.1.7.2.2 Cycloaddition with Alkenes 606
3.1.7.2.3 Cycloaddition with Compounds Containing Carbon–Heteroatom Double Bonds 607
3.1.7.2.4 Photochemical Cycloaddition 607

3.1.8 1,2,3-Oxadiazoliurn-5-olates (Sydnones) 609
3.1.8.1 Synthesis 609
3.1.8.1.1 From N-Nitroso-α-amino Acids 609
3.1.8.2 Reactions 609
3.1.8.2.1 Cycloadditions with Alkynes 610
3.1.8.2.2 Cycloadditions with Alkenes 611
3.1.8.2.3 Photochemical Reactions 612

3.2 Chemistry of Meso-Ionic Heterocycles of Type-B 614
3.2.1 1,2-Diazoliurn-4-aminides 614
3.2.1.1 Synthesis 614
3.2.1.2 Reactions 615
3.2.1.2.1 Thermal Isomerization 615
3.2.1.2.2 Reaction with DMAD 616

3.2.2 1,2-Dithiolium-4-olates 616
3.2.2.1 Synthesis 616
 3.2.2.1.1 From Propane-1,3-dione Esters 616
 3.2.2.1.2 From 1,3-Diarylpropane-1,2,3-triones 617
 3.2.2.1.3 From 1,1,3,3-Tetramethoxy-1,3-diarylpropan-2-ones 617

3.2.2.2 Reactions 618
 3.2.2.2.1 Desulfurization 618
 3.2.2.2.2 Reactions with Ammonia and Its Derivatives 618

 3.2.2.2.3 Thermal Reactions 620

3.2.3 1,2,3,4-Tetrazolium-5-thiolates 620
3.2.3.1 Synthesis 620
 3.2.3.1.1 From Dithizone 620
 3.2.3.1.2 From Diphenylthiocarbazide 621

3.2.3.2 Reactions 621
 3.2.3.2.1 Alkylation 621
 3.2.3.2.2 Thermal Rearrangement 621
 3.2.3.2.3 Cycloaddition Reactions 622
 3.2.3.2.4 Reactions involving Dehydrodithizone as Acyclic Valence Tautomer 623

REFERENCES 624
Heterocyclic Chemistry
Volume II: Five-Membered Heterocycles
Gupta, R.R.; Kumar, M.; Gupta, V.
1999, XI, 638 p., Hardcover
ISBN: 978-3-540-65252-6