Chapter 1
The Scope and History of Electrochemical Engineering

1.1 Carl Wagner and the Beginning of Electrochemical Engineering Science ... 1
1.2 Electrochemistry and Electrochemical Engineering Science .. 2
1.3 Electrochemical Engineering Science and Technology Since the Mid-1960s 3
1.4 What Means Electrochemical Engineering Science and Technology Today? 5
References .. 7
Further Reading .. 7

Chapter 2
Basic Principles and Laws in Electrochemistry

2.1 Stoichiometry of Electrochemical Reactions .. 8
2.2 Faraday’s Law ... 10
2.3 Production Rates and Current Densities .. 11
2.4 Ohm’s Law and Electrolyte Conductivities ... 12
2.5 Parallel Circuits and Cells with Electrolytic Bypass and Kirchhoff’s Rules 14
Further Reading. ... 16

Chapter 3
Electrochemical Thermodynamics

3.1 Equilibrium Cell Potential and Gibbs Energy ... 17
3.2 Electrode Potentials, Reference Electrodes, Voltage Series, Redox Schemes 21
3.3 Reaction Enthalpy, Reaction Entropy, Thermoneutral Cell Voltage and Heat Balances of Electrochemical Reactions ... 28
3.4 Heat Balances of Electrochemical Processes ... 29
Chapter 4

Electrode Kinetics and Electrocatalysis

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>The Electrochemical Double Layer</td>
<td>39</td>
</tr>
<tr>
<td>4.2</td>
<td>Kinetics of Interfacial Charge Transfer</td>
<td>41</td>
</tr>
<tr>
<td>4.3</td>
<td>Electrode Kinetics of Multielectron Charge Transfer Reactions</td>
<td>45</td>
</tr>
<tr>
<td>4.4</td>
<td>Thermal Activation and Activation Energies of Electrochemical Reactions</td>
<td>49</td>
</tr>
<tr>
<td>4.5</td>
<td>Electrochemical Reaction Orders</td>
<td>49</td>
</tr>
<tr>
<td>4.6</td>
<td>Current Density/Potential Correlations for Different Limiting Conditions</td>
<td>51</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Micro- and Macrokinetics of Electrochemical Reactions</td>
<td>51</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Mass Transfer Controlled Current Potential Curves</td>
<td>52</td>
</tr>
<tr>
<td>4.6.2.1</td>
<td>Reaction Controlled Current Voltage Curves</td>
<td>54</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Charge Transfer Controlled Current Voltage Correlation</td>
<td>55</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Combined Activation and Mass Transport Control</td>
<td>56</td>
</tr>
<tr>
<td>4.7</td>
<td>Reaction Controlled Current Voltage Curves</td>
<td>57</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Introductory Remarks</td>
<td>57</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Fast Preceding Reaction of an Electroactive Minority Species</td>
<td>58</td>
</tr>
<tr>
<td>4.7.3</td>
<td>Fast Consecutive Reactions</td>
<td>60</td>
</tr>
<tr>
<td>4.8</td>
<td>Electrocatalysis</td>
<td>61</td>
</tr>
<tr>
<td>4.8.1</td>
<td>Principles of Electrocatalysis</td>
<td>61</td>
</tr>
<tr>
<td>4.8.2</td>
<td>Heterogeneous Electrocatalysis in Cathodic Evolution and Anodic Oxidation of Hydrogen</td>
<td>61</td>
</tr>
<tr>
<td>4.8.2.1</td>
<td>The Volcano Curve</td>
<td>62</td>
</tr>
<tr>
<td>4.8.3</td>
<td>Electro catalysis in Anodic Oxygen Evolution and Cathodic Oxygen Reduction</td>
<td>64</td>
</tr>
<tr>
<td>4.8.4</td>
<td>Redox Catalysis</td>
<td>66</td>
</tr>
<tr>
<td>4.9</td>
<td>Catalyst Morphology and Utilisation</td>
<td>68</td>
</tr>
<tr>
<td>4.9.1</td>
<td>Structural Features and Catalyst Morphology of Electro catalysts for Gas Evolving and Gas Consuming Electrodes</td>
<td>68</td>
</tr>
<tr>
<td>4.9.2</td>
<td>Utilisation of Porous Electrocatalyst Particles</td>
<td>69</td>
</tr>
<tr>
<td>4.10</td>
<td>Electrocatalysis in Electroorganic Synthesis</td>
<td>71</td>
</tr>
<tr>
<td>4.10.1</td>
<td>Introduction into the Field of Electroorganic Synthesis</td>
<td>71</td>
</tr>
<tr>
<td>4.10.1.1</td>
<td>Mediated Electrochemical Conversions of Organic Substrates</td>
<td>71</td>
</tr>
</tbody>
</table>
4.10.1.2 Direct Anodic and Cathodic Electrochemical Conversions of Organic Substrates .. 72
4.10.2 Electrocatalytic Oxidations by Oxides of Multiply-Valent Metals ... 72
4.10.2.1 The Heterogeneously Catalysed Benzene Oxidation at Pb/PbO$_2$ Electrodes in Sulfuric Acid 74
4.10.3 Electrocatalytic Hydrogenation and Electrocatalyzed Mediated Reduction ... 74
4.10.4 The Electrode Surface as Medium Catalysing Chemical Reactions of Electrogenerated Reactive Organic Intermediates ... 75
4.10.4.1 Electrocatalytic Action of Electrosorbed Non-Reactant Species –Electrocatalysis of the Second Kind 78
4.10.5 Kinetics and Selectivity of Homogeneous Chemical Consecutive Reactions Following Charge Transfer ... 79

References ... 80

Further Reading ... 80

Chapter 5
Mass Transfer by Fluid Flow, Convective Diffusion and Ionic Electricity Transport in Electrolytes and Cells

5.1 Introduction .. 81
5.2 Fluid Dynamics and Convective Diffusion ... 81
5.3 Fluid Dynamics of Viscous, Incompressible Media ... 84
5.3.1 Laminar vs Turbulent Flow ... 86
5.3.2 Velocity Distributions for Laminar Flow .. 87
5.3.2.1 Singular Electrode: Unidirectional Laminar Flow Along a Plate ... 87
5.3.2.2 Pair of Planar Electrodes .. 88
5.3.2.3 Circular Capillary Gap Cell ... 89
5.4 Mass Transport by Convective Diffusion ... 90
5.4.1 Fundamentals .. 90
5.4.2 Dimensionless Numbers Defining Mass Transport Towards Electrodes by Convective Diffusion 92
5.4.3 Hydrodynamic Boundary Layer and Nernst Diffusion Layer: Planar Electrodes 93
5.4.4 Mass Transport Towards a Singular Planar Electrode Under Laminar Forced Flow 95
5.4.5 Channel Flow and Mass Transfer to Electrodes of Parallel Plate Cells for Free and Forced Convection 97
5.4.5.1 Free Convection at Isolated Planar Electrodes and between Two Vertical Electrodes 97
5.4.5.2 Convective Mass Transfer for Parallel Plate Cells with Forced Convection: Planar Plate Cells 98
Chapter 6
Electrochemical Reaction Engineering

6.1 Introductory Remarks .. 128
6.2 Microkinetic Models .. 128
6.3 Mode of Operation .. 129
6.4 Electrical Control of Cells 131
6.5 Macrokinetic Models .. 131
6.5.1 Stirred-Batch Tank Reactor 131
6.5.2 Continuously Stirred Tank Reactor 132

References .. 127

Further Reading ... 127
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5.3</td>
<td>Plug-Flow Reactor (PFR)</td>
<td>133</td>
</tr>
<tr>
<td>6.5.3.1</td>
<td>Plug Flow Electrolyzer with Uniform Current Density</td>
<td>135</td>
</tr>
<tr>
<td>6.5.3.2</td>
<td>PFR Operated at Mass Transfer Limited and Higher Current Density</td>
<td>135</td>
</tr>
<tr>
<td>6.5.4</td>
<td>Cell Cascades</td>
<td>136</td>
</tr>
<tr>
<td>6.5.5</td>
<td>Extended Modelling of Electrolyzers</td>
<td>138</td>
</tr>
<tr>
<td>6.5.6</td>
<td>Residence-Time Distribution</td>
<td>139</td>
</tr>
<tr>
<td>6.5.7</td>
<td>The Selectivity Problem of Consecutive Reactions in Batch Reactors</td>
<td>142</td>
</tr>
<tr>
<td>6.6</td>
<td>Coupling of Electrochemical and Chemical Reactors</td>
<td>146</td>
</tr>
<tr>
<td>6.7</td>
<td>Electrolyzer Design and Chemical Yield Losses Due To Parasitic Chemical Reactions</td>
<td>148</td>
</tr>
<tr>
<td>6.8</td>
<td>Performance Criteria of Electrochemical Reactors</td>
<td>149</td>
</tr>
<tr>
<td>6.8.1</td>
<td>Fractional Conversion, X</td>
<td>150</td>
</tr>
<tr>
<td>6.8.2</td>
<td>Relative Amount of Charge-Q<sub>r</sub></td>
<td>150</td>
</tr>
<tr>
<td>6.8.3</td>
<td>Overall Conversion Related Yield Q<sub>p</sub></td>
<td>150</td>
</tr>
<tr>
<td>6.8.4</td>
<td>Current Efficiency Φ<sup>e</sup></td>
<td>151</td>
</tr>
<tr>
<td>6.8.5</td>
<td>Parameters for Energy Considerations</td>
<td>152</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>152</td>
</tr>
<tr>
<td>Further Reading</td>
<td></td>
<td>152</td>
</tr>
</tbody>
</table>

Chapter 7

Electrochemical Engineering of Porous Electrodes and Disperse Multiphase Electrolyte Systems

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>153</td>
</tr>
<tr>
<td>7.2</td>
<td>Three-Dimensional Electrodes</td>
<td>154</td>
</tr>
<tr>
<td>7.2.1</td>
<td>General Considerations</td>
<td>154</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Fundamental Equations</td>
<td>155</td>
</tr>
<tr>
<td>7.2.2.1</td>
<td>Nanoporous Electrode Particles</td>
<td>156</td>
</tr>
<tr>
<td>7.2.2.2</td>
<td>Microporous Electrodes</td>
<td>156</td>
</tr>
<tr>
<td>7.2.2.3</td>
<td>Packed and Fluidized Bed Electrodes</td>
<td>157</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Gas Consuming Nanoporous Electrodes for Fuel Cells and Nanoporous Catalyst Particles and Layers for Gas Evolving Electrodes</td>
<td>157</td>
</tr>
<tr>
<td>7.2.3.1</td>
<td>Physical Structure of Particulate, Gas Consuming Nanoporous Gas Diffusion Electrodes</td>
<td>157</td>
</tr>
<tr>
<td>7.2.3.2</td>
<td>Physical Structure of Raney Nickel Coatings for Hydrogen Evolving Cathodes</td>
<td>159</td>
</tr>
<tr>
<td>7.2.3.3</td>
<td>Modelling Hydrogen Concentration Profiles and Catalyst Efficiencies for Hydrogen Consuming Fuel Cell Anodes or Other Gas Diffusion Electrodes</td>
<td>160</td>
</tr>
<tr>
<td>7.2.3.4</td>
<td>Modelling of Hydrogen Concentration Profiles and Catalyst Efficiencies for Hydrogen Evolving Nanoporous Raney-Nickel Catalyst Coatings</td>
<td>165</td>
</tr>
</tbody>
</table>
Chapter 9
Process Development

9.1 Scope and Purpose of Laboratory and Pilot Plant Measurements

9.2 Laboratory Methods

9.2.1 Steady-State Measurements of Current Density Potential Correlations

9.2.1.1 General Remarks

9.2.1.2 Measuring Devices

9.2.1.3 Evaluation of Rotating Disc Measurements

9.2.1.4 Current-Voltage Correlation for Competing Reactions by Non-Electrochemical Methods

9.2.1.5 The Ring Disc Electrode

9.2.2 Non-Steady State Methods

9.2.2.1 General Remarks

9.2.2.2 Potentiodynamic Polarisation Curves

9.2.2.2.1 Cyclic Voltammetry and Linear Potential Sweep Method

9.2.2.2.2 Initial Polarisation Curves

9.2.2.3 Square-Wave Pulses

9.2.2.4 Eliminating the IR Drop

9.2.2.4.1 Galvanostatic Methods

9.2.2.4.2 Potentiostatic Procedures

9.3 Pilot Plant Methods

9.3.1 General Considerations

9.3.2 Mass-Transfer Measurements

9.3.3 Determination of Residence-Time Distributions

9.4 Mathematical Modelling and Optimisation by Factorial Design of Experiments

9.4.1 Introduction

9.4.2 General Procedure for Optimum Finding by Experiment

9.4.3 Factorial Design of Experiments

9.5 Cost Analysis

9.5.1 Composition of Productions Costs

9.5.2 Total and Specific Investment Costs

9.5.3 Cost Optimisation with Respect to Current Density

9.5.4 Optimisation of Non-Selective Electrolysis Processes

9.5.4.1 Current Density Against Current Efficiency
Chapter 10
Industrial Electrodes

10.1 Catalytically Activated Electrodes ... 252
10.2 Functioning, Longevity and Application of
Electrocatalyst Coatings .. 253
10.3 Design of Industrial Electrodes ... 255
 10.3.1 Monopolar Electrodes and Current Density
 Distribution on Their Surface ... 255
 10.3.2 Electrodes for Bipolar Electrode Stacks 257
 10.3.3 Gas Evolving Electrodes ... 258
10.4 Structural Features of Electrocatalysts for Gas Evolving and
 Gas Consuming Electrodes .. 260
10.5 Electrocatalytically Activated Dimensionally Stable
 Chlorine-Evolving Electrodes .. 260
 10.5.1 Technological History .. 260
 10.5.2 Electrocatalysis and Selectivity of Anodic
 Chlorine Evolution at RuO$_2$-Anodes 261
 10.5.3 Preparation and Formulation of the Coatings 261
 10.5.4 Improvement of Adhesion and Strength
 of the Coatings .. 261
 10.5.5 Design of Cells Using DSAs ... 262
 10.5.6 Lifetime of Dimensionally Stable Chlorine
 Evolving Anodes ... 263
 10.5.7 DSAs for Chlorate and Hypochlorite Production 264
10.6 Oxygen Evolving Anodes ... 265
 10.6.1 Technical Processes .. 265
 10.6.2 Electrocatalysis of Oxygen Evolution in Advanced
 Alkaline Water Electrolysis .. 265
 10.6.2.1 Coatings Containing Cobalt and Iron Oxides 265
 10.6.3 Electrocatalysis of the Anodic Oxygen Evolution
 by Raney-Nickel Coatings ... 266
 10.6.4 Catalyst-Coated Titanium Electrodes for Oxygen
 Evolution From Acid Solutions 266
10.7 Hydrogen Evolving Cathodes .. 268
 10.7.1 Technoeconomical Significance of Cathodic
 Hydrogen Evolution ... 268
 10.7.2 Electrocatalyst Coatings for Hydrogen Evolution
 from Alkaline Solution .. 268
10.7.2.1 Technically Applied Coatings 268
10.7.2.2 Nickel Sulfide Coatings .. 269
10.7.2.3 Raney-Nickel Coatings ... 269
10.7.2.3.1 Precursor Alloys and Fabrication of Coated Cathodes .. 269
10.7.2.3.2 Utilisation of the Catalyst in Raney-Nickel Coatings .. 271
10.7.2.3.3 Performance and Ageing of Raney-Nickel Coatings .. 272
10.7.3 Coatings of Platinum Metal Oxides 273
10.7.4 Active Coatings of Flame Sprayed, Doped Nickel Oxide 273
10.7.5 Platinum and Platinum Metal Cathodes in Membrane Water Electrolyzers .. 273

10.8 Fuel-Cell Electrodes .. 274
10.8.1 Low- and High-Temperature Fuel Cells 274
10.8.2 Structural Design of Gas-Diffusion Electrodes in Low-Temperature Fuel Cells .. 275
10.8.3 Oxygen Reduction Catalysts in Low-Temperature Cells 276
10.8.4 Catalysts for Anodic Hydrogen Oxidation 276
10.8.5 Properties, Preparation and Improvement of Electrocatalysts in Gas Diffusion Electrodes for Low Temperature Cells .. 277
10.8.5.1 Pt-Activated Active Carbon 277
10.8.5.2 Particle Size of Pt Nanocrystals on Active Carbon and Their Effective Catalytic Activity .. 278
10.8.5.3 Pt-Alloy Catalysts .. 278
10.8.6 Morphology and Structure of Complete PTFE-Bonded Active-Carbon Electrodes .. 279
10.8.7 Ageing of Pt-Catalysts .. 280
10.8.8 Electrocatalysis of Anodic Methanol Oxidation 281
10.8.8.1 Technoeconomic Significance of the Process 281
10.8.8.2 Self-Poisoning of Methanol Oxidising Pt-Catalyst by Oxidation Products of Methanol .. 281
10.8.8.3 Anodic Methanol Oxidation at Alloy Catalysts 281
10.8.9 Gas-Diffusion Electrodes in Membrane (PEM) Fuel Cells .. 282
10.8.9.1 Rationale of Developing a Method of Internal Wetting for Membrane Fuel Cell Electrodes .. 282
10.8.9.2 Improving Catalyst Utilisation by Ionomer Impregnation of Gas-Diffusion Electrodes .. 282
10.8.9.3 The Preparation of Membrane Electrode Assemblies (MEAs) for Membrane Fuel Cells .. 283
10.8.10 Electrodes for High-Temperature Fuel Cells 284
10.8.10.1 Stability of Electrode Structures at High Temperatures .. 284
10.8.11 Electrode Kinetics and Electrocatalysis in Molten-Carbonate Fuel Cells ... 285
10.8.11.1 Anodic Hydrogen Oxidation ... 285
10.8.11.2 Cathodic Oxygen Reduction ... 285
10.8.12 Electrodes in Solid-Oxide Fuel Cells (SOFC) 287
10.8.12.1 Electrodes and Electrode Structure 287
10.8.12.2 The SOFC-Anode .. 287
10.8.12.3 The SOFC-Cathode .. 288

References ... 289
Further Reading ... 289

Chapter 11
Industrial Processes

11.1 Introductory Remarks .. 290
11.2 Inorganic Electrolysis and Electrosynthesis 291
11.3 Chloralkali-Electrolysis .. 291
 11.3.1 The Electrochemical Reaction ... 292
 11.3.2 Thermodynamics and Energy Demands 292
 11.3.3 Anodic Chlorine Evolution ... 293
 11.3.4 The Cathodic Reaction .. 294
 11.3.4.1 Cathodic Sodium Deposition in the Mercury Process ... 294
 11.3.4.2 Cathodic Hydrogen Evolution in the Diaphragm and Membrane Process 295
11.4 Process Technologies .. 295
 11.4.1 The Amalgam Process .. 295
 11.4.2 The Diaphragm Process ... 297
 11.4.3 The Membrane Process ... 298
 11.4.3.1 Process-Flow Sheets .. 300
 11.4.3.2 Brine Recycling .. 302
 11.4.4 Gas Purification and Conditioning 303
 11.4.4.1 Chlorine ... 303
 11.4.4.2 Hydrogen ... 304
 11.4.5 Comparison of the Three Processes 304
11.5 Hypochlorite, Chlorate and Chlorine Dioxide 306
 11.5.1 Production of Sodium Hypochlorite 306
 11.5.1.1 Electrolytic Generation of Hypochlorite 306
 11.5.1.2 Current Efficiency Losses ... 307
 11.5.2 Production of Sodium Chlorate ... 307
 11.5.2.1 Balance of Plant of Chlorate Electrosynthesis 310
 11.5.2.2 Construction Materials ... 311
 11.5.3 Chlorine Dioxide from Sodium Chlorate 311
11.6 Perchloric Acid, Perchlorates, Peroxidsulfates 312
 11.6.1 Perchloric Acid ... 312
 11.6.2 Sodium Perchlorate .. 312
11.6.3 Peroxidisulfates .. 313
11.7 Fluorine ... 315
11.8 Hydrogen by Water Electrolysis 316
11.8.1 Technoeconomic Environment 316
11.8.2 Thermodynamics and Technological Principles of Electrolytic Water Splitting 317
11.8.3 Process Technologies .. 318
11.8.4 Conventional Alkaline Water Electrolysis 320
11.8.4.1 Monopolar Technology ... 320
11.8.4.2 Bipolar Technology .. 320
11.8.4.3 Improved Alkaline Technologies 323
11.8.5 New Technologies ... 324
11.8.5.1 Membrane Water Electrolysis 324
11.8.5.2 Steam Electrolysis .. 324
11.8.6 Economic Implications of Technical Innovations for Alkaline Water Electrolysis 325
11.9 Electrowinning and Electrorefining of Metals 326
11.9.1 Metal Electrowinning and Refining from Aqueous Electrolytes .. 326
11.9.2 Copper Electrowinning and Electrorefining 330
11.9.3 Nickel Electrowinning ... 331
11.9.4 Nickel from the Chloride Leach Process 333
11.9.5 Nickel Refining ... 334
11.9.6 Zinc Electrowinning .. 334
11.9.7 Lead Electrorefining ... 335
11.10 Metal Electrowinning from Molten Salt Electrolytes 335
11.10.1 General Considerations ... 335
11.10.2 Aluminium Production – the Hall–Heroult Process 336
11.10.2.1 The Melt .. 336
11.10.2.2 Electrode Reactions .. 338
11.10.3 The Cell ... 339
11.10.4 Alkali Metals from Chloride Melts 341
11.10.5 Magnesium Electrolysis .. 342
11.10.5.1 Production of the Feed Salt 343
11.10.5.2 Magnesium Electrolysis Cells 344
11.11 Organic Electrosynthesis Processes 345
11.11.1 General Overview .. 345
11.11.2 Cell Types Used in Commercial Electroorganic Synthesis ... 347
11.11.3 Process and Reaction Techniques of Some Examples of Industrial Organic Electrosyntheses 349
11.11.3.1 Adipodinitrile Production by the Monsanto/Baizer Process ... 349
11.11.3.2 Electrosynthesis of Sebacic Diesters by Kolbe Synthesis ... 352
11.11.3.3 Benzaldehydes by Direct Anodic Oxidation of Toluences. 353
11.11.3.4 The Selective Anodic Oxidation of L-Sorbose in Commercial Vitamin C Synthesis 353
11.11.3.5 Anodic Formation of Perfluoro-Propylene Oxide. 355

11.12 Selected Electrochemical Procedures Outside the Chemical and Metallurgical Industries 357
11.12.1 Electrochemical Wastewater Treatment by Electrodeposition and by Electroosmosis 357
11.12.1.1 General Considerations 357
11.12.1.2 Particular Cells for Removal of Metal Ions from Effluents 358
11.12.1.3 Electrodialysis 361
11.12.2 Electrochemical Surface Treatment and Shaping of Metals 362
11.12.2.1 Electrochemical Shaping 362
11.12.2.2 Electropolishing 363
11.12.2.3 Electrochemical Machining (ECM) 365
11.12.2.4 Electrochemical Grinding 366
11.12.3 Electroreforming of Microdies and Microtools by the LIGA-Process 368

References 369
Further Reading 369

Chapter 12
Fuel Cells

12.1 Fuel Cells as Gas Supplied Batteries. 370
12.2 Theoretical Efficiency of Hydrogen/Oxygen Fuel Cells 371
12.3 Fuel Cell Types 373
12.3.1 Low-Temperature Fuel Cells – Their Technological State 375
12.3.1.1 Phosphoric-Acid Cells 375
12.3.1.2 Membrane Cells 376
12.3.1.3 Direct and Indirect Methanol-Combusting Membrane Cells 377
12.3.1.4 Process Principles of the PAFCs and PEMFCs with Proton Conducting Electrolyte 378
12.3.2 High-Temperature Fuel Cells 379
12.3.2.1 Molten-Carbonate and Solid Oxide Fuel Cells 379
12.3.2.2 Process Schemes of MFCFs and SOFCs 379
12.3.2.3 Internal Reforming in High-Temperature Fuel Cells 380
12.3.3 Cell Technologies of MFCFs and SOFCs 381
12.3.3.1 Molten-Carbonate Fuel Cells 381
12.3.3.2 Solid Oxide Fuel Cells 382
12.3.3.3 The Westinghouse Technology 382
12.3.4 Flat-Plate Solid Oxide Cells ... 384
12.4 Current Voltage Curves of Different Fuel Cells 385
12.5 Fuel-Cell Systems ... 387
 12.5.1 Phosphoric-Acid Fuel Cell / PC 25 387
 12.5.2 Molten Carbonate Cells ... 390
 12.5.2.1 ERC-2 MW Plant .. 390
 12.5.2.2 Hot Module of MTU ... 390
 12.5.3 Proton Exchange Membrane Cells 391
 12.5.3.1 The Ballard Cell ... 392
 12.5.3.2 De Nora’s Cell .. 394

Further Reading ... 394

Subject Index ... 395
Electrochemical Engineering
Science and Technology in Chemical and Other Industries
Wendt, H.; Kreysa, G.
1999, XXI, 408 p., Hardcover
ISBN: 978-3-540-64386-9