Contents

Chapter 1
The Scope and History of Electrochemical Engineering

1.1 Carl Wagner and the Beginning of Electrochemical Engineering Science ... 1
1.2 Electrochemistry and Electrochemical Engineering Science ... 2
1.3 Electrochemical Engineering Science and Technology Since the Mid-1960s .. 3
1.4 What Means Electrochemical Engineering Science and Technology Today? 5
References .. 7
Further Reading .. 7

Chapter 2
Basic Principles and Laws in Electrochemistry

2.1 Stoichiometry of Electrochemical Reactions ... 8
2.2 Faraday's Law ... 10
2.3 Production Rates and Current Densities ... 11
2.4 Ohm's Law and Electrolyte Conductivities ... 12
2.5 Parallel Circuits and Cells with Electrolytic Bypass and Kirchhoff’s Rules .. 14
Further Reading .. 16

Chapter 3
Electrochemical Thermodynamics

3.1 Equilibrium Cell Potential and Gibbs Energy ... 17
3.2 Electrode Potentials, Reference Electrodes, Voltage Series, Redox Schemes 21
3.3 Reaction Enthalpy, Reaction Entropy, Thermoneutral Cell Voltage and Heat Balances of Electrochemical Reactions .. 28
3.4 Heat Balances of Electrochemical Processes ... 29
Chapter 4
Electrode Kinetics and Electrocatalysis

4.1 The Electrochemical Double Layer ... 39
4.2 Kinetics of Interfacial Charge Transfer 41
4.3 Electrode Kinetics of Multielectron Charge Transfer Reactions ... 45
4.4 Thermal Activation and Activation Energies of
Electrochemical Reactions .. 49
4.5 Electrochemical Reaction Orders .. 49
4.6 Current Density/Potential Correlations for
Different Limiting Conditions ... 51
 4.6.1 Micro- and Macrokinetics of Electrochemical
 Reactions. ... 51
 4.6.2 Mass Transfer Controlled Current Potential Curves ... 52
 4.6.2.1 Reaction Controlled Current Voltage Curves 54
 4.6.3 Charge Transfer Controlled Current Voltage
 Correlation. ... 55
 4.6.4 Combined Activation and Mass Transport Control ... 56
4.7 Reaction Controlled Current Voltage Curves 57
 4.7.1 Introductory Remarks ... 57
 4.7.2 Fast Preceding Reaction of an Electroactive
 Minority Species .. 58
 4.7.3 Fast Consecutive Reactions .. 60
4.8 Electrocatalysis ... 61
 4.8.1 Principles of Electrocatalysis ... 61
 4.8.2 Heterogeneous Electrocatalysis in Cathodic
 Evolution and Anodic Oxidation of Hydrogen 61
 4.8.2.1 The Volcano Curve .. 62
 4.8.3 Electrocatalysis in Anodic Oxygen Evolution
 and Cathodic Oxygen Reduction .. 64
 4.8.4 Redox Catalysis .. 66
4.9 Catalyst Morphology and Utilisation .. 68
 4.9.1 Structural Features and Catalyst Morphology
 of Electrocatalysts for Gas Evolving and Gas
 Consuming Electrodes ... 68
 4.9.2 Utilisation of Porous Electrocatalyst Particles 69
4.10 Electrocatalysis in Electroorganic Synthesis 71
 4.10.1 Introduction into the Field of Electroorganic
 Synthesis .. 71
 4.10.1.1 Mediated Electrochemical Conversions of
 Organic Substrates .. 71
Chapter 5
Mass Transfer by Fluid Flow, Convective Diffusion and Ionic Electricity
Transport in Electrolytes and Cells

5.1 Introduction ... 81
5.2 Fluid Dynamics and Convective Diffusion 81
5.3 Fluid Dynamics of Viscous, Incompressible Media 84
 5.3.1 Laminar vs Turbulent Flow 86
 5.3.2 Velocity Distributions for Laminar Flow 87
 5.3.2.1 Singular Electrode: Unidirectional Laminar Flow Along a Plate 87
 5.3.2.2 Pair of Planar Electrodes 88
 5.3.2.3 Circular Capillary Gap Cell 89
5.4 Mass Transport by Convective Diffusion 90
 5.4.1 Fundamentals ... 90
 5.4.2 Dimensionless Numbers Defining Mass Transport Towards Electrodes by Convective Diffusion 92
 5.4.3 Hydrodynamic Boundary Layer and Nernst Diffusion Layer: Planar Electrodes 93
 5.4.4 Mass Transport Towards a Singular Planar Electrode Under Laminar Forced Flow 95
 5.4.5 Channel Flow and Mass Transfer to Electrodes of Parallel Plate Cells for Free and Forced Convection 97
 5.4.5.1 Free Convection at Isolated Planar Electrodes and between Two Vertical Electrodes 97
 5.4.5.2 Convective Mass Transfer for Parallel Plate Cells with Forced Convection: Planar Plate Cells 98
Chapter 5
Mass Transfer in Electrolytes

5.4 Mass Transfer in Electrolytes
5.4.1 Mass Transfer in Electrolytes
5.4.1.1 Mass Transfer in Electrodeposits
5.4.2 Convective Mass Transfer Toward Rotating Electrodes
5.4.3 Mass Transfer in Capillary Gap Cells
5.4.4 Mass Transfer at Evolving Electrodes
5.4.5 Mass Transfer in Circular Capillary Gap Cells
5.4.6 Convective Mass Transfer Toward Rotating Electrodes
5.4.6.1 Rotating Cylinder
5.4.6.2 Rotating Disc Electrode
5.4.7 Mass Transfer at Gas Evolving Electrodes
5.4.7.1 Calculating \(k_{m,\text{bubble}} \) According to the Penetration Model or Model of Periodic Boundary Layer Renewal
5.4.7.2 Calculating Bubble-Enhanced Mass Transfer According to Flow Model
5.4.8 Mass Transfer in Three-Dimensional Electrodes
5.4.9 Summary

5.5 Heat Transport
5.5.1 Chilton–Colburn Analogy of Mass and Heat Transfer
5.5.2 General Description of Heat Generation and Heat Transfer in Electrolyzers and Fuel Cells
5.5.2.1 Heat Balance and Steady State-Temperature of Cells

5.6 Ionic Charge and Mass Transport in Electrolytes
5.6.1 Strong Electrolytes
5.7 Temperature Dependence of Electrolyte Conductivities
5.8 Molten Salt Electrolytes
5.9 Segregation in Stagnant Electrolytes of Binary Molten Carbonates in Fuel Cells

5.10 Current Density Distribution in Cells and Electrochemical Devices
5.11 Primary Current Density Distribution
5.12 Secondary Current Density Distribution
5.13 Secondary Current Density Distribution and “Throwing Power” in Electrodeposition and Electrocoating
5.14 The Wagner Number
5.15 Tertiary Current Distribution

References
Further Reading

Chapter 6
Electrochemical Reaction Engineering

6.1 Introductory Remarks
6.2 Microkinetic Models
6.3 Mode of Operation
6.4 Electrical Control of Cells
6.5 Macrokinetic Models
6.5.1 Stirred-Batch Tank Reactor
6.5.2 Continuously Stirred Tank Reactor
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5.3</td>
<td>Plug-Flow Reactor (PFR)</td>
<td>133</td>
</tr>
<tr>
<td>6.5.3.1</td>
<td>Plug Flow Electrolyzer with Uniform Current Density</td>
<td>135</td>
</tr>
<tr>
<td>6.5.3.2</td>
<td>PFR Operated at Mass Transfer Limited and</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>Higher Current Density</td>
<td></td>
</tr>
<tr>
<td>6.5.4</td>
<td>Cell Cascades</td>
<td>136</td>
</tr>
<tr>
<td>6.5.5</td>
<td>Extended Modelling of Electrolyzers</td>
<td>138</td>
</tr>
<tr>
<td>6.5.6</td>
<td>Residence-Time Distribution</td>
<td>139</td>
</tr>
<tr>
<td>6.5.7</td>
<td>The Selectivity Problem of Consecutive Reactions in Batch Reactors</td>
<td>142</td>
</tr>
<tr>
<td>6.6</td>
<td>Coupling of Electrochemical and Chemical Reactors</td>
<td>146</td>
</tr>
<tr>
<td>6.7</td>
<td>Electrolyzer Design and Chemical Yield Losses Due To Parasitic Chemical Reactions</td>
<td>148</td>
</tr>
<tr>
<td>6.8</td>
<td>Performance Criteria of Electrochemical Reactors</td>
<td>149</td>
</tr>
<tr>
<td>6.8.1</td>
<td>Fractional Conversion, X</td>
<td>150</td>
</tr>
<tr>
<td>6.8.2</td>
<td>Relative Amount of Charge-Q_r</td>
<td>150</td>
</tr>
<tr>
<td>6.8.3</td>
<td>Overall Conversion Related Yield Θ_p</td>
<td>150</td>
</tr>
<tr>
<td>6.8.4</td>
<td>Current Efficiency Φ_e</td>
<td>151</td>
</tr>
<tr>
<td>6.8.5</td>
<td>Parameters for Energy Considerations</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>152</td>
</tr>
</tbody>
</table>

Chapter 7

Electrochemical Engineering of Porous Electrodes and Disperse Multiphase Electrolyte Systems

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>153</td>
</tr>
<tr>
<td>7.2</td>
<td>Three-Dimensional Electrodes</td>
<td>154</td>
</tr>
<tr>
<td>7.2.1</td>
<td>General Considerations</td>
<td>154</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Fundamental Equations</td>
<td>155</td>
</tr>
<tr>
<td>7.2.2.1</td>
<td>Nanoporous Electrode Particles</td>
<td>156</td>
</tr>
<tr>
<td>7.2.2.2</td>
<td>Microporous Electrodes</td>
<td>156</td>
</tr>
<tr>
<td>7.2.2.3</td>
<td>Packed and Fluidized Bed Electrodes</td>
<td>157</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Gas Consuming Nanoporous Electrodes for Fuel Cells and Nanoporous Catalyst Particles and Layers for Gas Evolving Electrodes</td>
<td>157</td>
</tr>
<tr>
<td>7.2.3.1</td>
<td>Physical Structure of Particulate, Gas Consuming Nanoporous Gas Diffusion Electrodes</td>
<td>157</td>
</tr>
<tr>
<td>7.2.3.2</td>
<td>Physical Structure of Raney Nickel Coatings for Hydrogen Evolving Cathodes</td>
<td>159</td>
</tr>
<tr>
<td>7.2.3.3</td>
<td>Modelling Hydrogen Concentration Profiles and Catalyst Efficiencies for Hydrogen Consuming Fuel Cell Anodes or Other Gas Diffusion Electrodes</td>
<td>160</td>
</tr>
<tr>
<td>7.2.3.4</td>
<td>Modelling of Hydrogen Concentration Profiles and Catalyst Efficiencies for Hydrogen Evolving Nanoporous Raney-Nickel Catalyst Coatings</td>
<td>165</td>
</tr>
</tbody>
</table>
Chapter 7
Electrolyzer Electrodes

7.2.4 Porous Battery Electrodes .. 171
7.2.5 Packed Bed and Fluidized Bed Electrodes
 Composed of Coarse Particles 173
7.2.5.1 Fluidized Bed Electrodes 178
7.3 Ionic Conductivity of Electrolytes Containing Dispersed
 Gas Bubbles in Gas Evolving Electrolyzers 179
7.4 Electrolyzers with Gaseous Reactants 183
7.5 Electrochemical Liquid/Liquid Systems 186
References ... 186
Further Reading ... 186

Chapter 8
Electrochemical Cell and Plant Engineering

8.1 Materials Choice and Corrosion Problems 187
 8.1.1 Metals .. 188
 8.1.2 Carbon ... 192
8.2 Electrode Materials .. 193
 8.2.1 Stainless Steel ... 194
 8.2.2 Nickel .. 194
 8.2.3 Lead .. 195
 8.2.4 Titanium ... 195
 8.2.5 Noble Metals .. 195
 8.2.6 Massive Carbon ... 196
8.3 Electrode Design ... 196
 8.3.1 Gas Evolving Electrodes 196
 8.3.2 Gas Consuming Electrodes, Gas Diffusion Electrodes 197
8.4 Separators: Membranes and Diaphragms 199
 8.4.1 Membranes ... 201
 8.4.2 Diaphragms .. 203
8.5 Polymeric Materials for Cell Bodies and Electrolyte Loops 203
8.6 Gaskets ... 205
8.7 Electrodes .. 206
 8.7.1 Horizontal Electrodes .. 206
 8.7.2 Membrane Electrolyzer 207
8.8 Cell and Electrode Design .. 208
 8.8.1 Zero Gap Electrolysis Cells 208
 8.8.2 Vertical/Horizontal Electrodes 209
 8.8.3 Divided/Undivided Monopolar/Bipolar Cells
 and Modes of Electrolyte Flow 209
 8.8.4 Special Cell Designs ... 210
 8.8.5 Capillary Gap Cells ... 216
 8.8.6 Swiss Roll Cell ... 216
 8.8.7 Cells with Three-Dimensional Electrodes 217
8.9 Power Supply for Electrochemical Plants 218
Chapter 9
Process Development

9.1 Scope and Purpose of Laboratory and Pilot Plant Measurements

9.2 Laboratory Methods
- **9.2.1 Steady-State Measurements of Current Density Potential Correlations**
 - **9.2.1.1 General Remarks**
 - **9.2.1.2 Measuring Devices**
 - **9.2.1.3 Evaluation of Rotating Disc Measurements**
 - **9.2.1.4 Current-Voltage Correlation for Competing Reactions by Non-Electrochemical Methods**
- **9.2.1.5 The Ring Disc Electrode**
- **9.2.2 Non-Steady State Methods**
 - **9.2.2.1 General Remarks**
 - **9.2.2.2 Potentiodynamic Polarisation Curves**
 - **9.2.2.2.1 Cyclic Voltammetry and Linear Potential Sweep Method**
 - **9.2.2.2.2 Initial Polarisation Curves**
 - **9.2.2.3 Square-Wave Pulses**
 - **9.2.2.4 Eliminating the IR Drop**
 - **9.2.2.4.1 Galvanostatic Methods**
 - **9.2.2.4.2 Potentiostatic Procedures**
- **9.2.2.5 Potentiostatic Procedures**
- **9.3 Pilot Plant Methods**
- **9.3.1 General Considerations**
- **9.3.2 Mass-Transfer Measurements**
- **9.3.3 Determination of Residence-Time Distributions**

9.4 Mathematical Modelling and Optimisation by Factorial Design of Experiments
- **9.4.1 Introduction**
- **9.4.2 General Procedure for Optimum Finding by Experiment**
- **9.4.3 Factorial Design of Experiments**

9.5 Cost Analysis
- **9.5.1 Composition of Productions Costs**
- **9.5.2 Total and Specific Investment Costs**
- **9.5.3 Cost Optimisation with Respect to Current Density**
- **9.5.4 Optimisation of Non-Selective Electrolysis Processes**
- **9.5.4.1 Current Density Against Current Efficiency**
Chapter 10
Industrial Electrodes

10.1 Catalytically Activated Electrodes

10.2 Functioning, Longevity and Application of Electrocatalyst Coatings

10.3 Design of Industrial Electrodes

10.3.1 Monopolar Electrodes and Current Density Distribution on Their Surface

10.3.2 Electrodes for Bipolar Electrode Stacks

10.3.3 Gas Evolving Electrodes

10.4 Structural Features of Electrocatalysts for Gas Evolving and Gas Consuming Electrodes

10.5 Electrocatalytically Activated Dimensionally Stable Chlorine-Evolving Electrodes

10.5.1 Technological History

10.5.2 Electrocatalysis and Selectivity of Anodic Chlorine Evolution at RuO$_2$-Anodes

10.5.3 Preparation and Formulation of the Coatings

10.5.4 Improvement of Adhesion and Strength of the Coatings

10.5.5 Design of Cells Using DSAs

10.5.6 Lifetime of Dimensionally Stable Chlorine Evolving Anodes

10.5.7 DSAs for Chlorate and Hypochlorite Production

10.6 Oxygen Evolving Anodes

10.6.1 Technical Processes

10.6.2 Electrocatalysis of Oxygen Evolution in Advanced Alkaline Water Electrolysis

10.6.2.1 Coatings Containing Cobalt and Iron Oxides

10.6.3 Electrocatalysis of the Anodic Oxygen Evolution by Raney-Nickel Coatings

10.6.4 Catalyst-Coated Titanium Electrodes for Oxygen Evolution From Acid Solutions

10.7 Hydrogen Evolving Cathodes

10.7.1 Technoeconomical Significance of Cathodic Hydrogen Evolution

10.7.2 Electrocatalyst Coatings for Hydrogen Evolution from Alkaline Solution
10.7.2.1 Technically Applied Coatings 268
10.7.2.2 Nickel Sulfide Coatings 269
10.7.2.3 Raney-Nickel Coatings 269
10.7.2.3.1 Precursor Alloys and Fabrication of Coated Cathodes ... 269
10.7.2.3.2 Utilisation of the Catalyst in Raney-Nickel Coatings .. 271
10.7.2.3.3 Performance and Ageing of Raney-Nickel Coatings .. 272
10.7.3 Coatings of Platinum Metal Oxides 273
10.7.4 Active Coatings of Flame Sprayed, Doped Nickel Oxide ... 273
10.7.5 Platinum and Platinum Metal Cathodes in Membrane Water Electrolyzers ... 273

10.8 Fuel-Cell Electrodes .. 274
10.8.1 Low- and High-Temperature Fuel Cells 274
10.8.2 Structural Design of Gas-Diffusion Electrodes in Low-Temperature Fuel Cells 275
10.8.3 Oxygen Reduction Catalysts in Low-Temperature Cells ... 276
10.8.4 Catalysts for Anodic Hydrogen Oxidation 276
10.8.5 Properties, Preparation and Improvement of Electrocatalysts in Gas Diffusion Electrodes for Low Temperature Cells ... 277
10.8.5.1 Pt-Activated Active Carbon 277
10.8.5.2 Particle Size of Pt Nanocrystals on Active Carbon and Their Effective Catalytic Activity ... 278
10.8.5.3 Pt-Alloy Catalysts ... 278
10.8.6 Morphology and Structure of Complete PTFE-Bonded Active-Carbon Electrodes 279
10.8.7 Ageing of Pt-Catalysts .. 280
10.8.8 Electrocatalysis of Anodic Methanol Oxidation 281
10.8.8.1 Technoeconomic Significance of the Process 281
10.8.8.2 Self-Poisoning of Methanol Oxidising Pt-Catalyst by Oxidation Products of Methanol 281
10.8.8.3 Anodic Methanol Oxidation at Alloy Catalysts 281
10.8.9 Gas-Diffusion Electrodes in Membrane (PEM) Fuel Cells ... 282
10.8.9.1 Rationale of Developing a Method of Internal Wetting for Membrane Fuel Cell Electrodes 282
10.8.9.2 Improving Catalyst Utilisation by Ionomer Impregnation of Gas-Diffusion Electrodes 282
10.8.9.3 The Preparation of Membrane Electrode Assemblies (MEAs) for Membrane Fuel Cells 283
10.8.10 Electrodes for High-Temperature Fuel Cells 284
10.8.10.1 Stability of Electrode Structures at High Temperatures .. 284
11.6.3 Peroxidisulfates ... 313
11.7 Fluorine ... 315
11.8 Hydrogen by Water Electrolysis 316
 11.8.1 Technoeconomic Environment 316
 11.8.2 Thermodynamics and Technological Principles of Electrolytic Water Splitting .. 317
 11.8.3 Process Technologies ... 318
 11.8.4 Conventional Alkaline Water Electrolysis 320
 11.8.4.1 Monopolar Technology 320
 11.8.4.2 Bipolar Technology ... 320
 11.8.5 Improved Alkaline Technologies 323
 11.8.5.1 Membrane Water Electrolysis 324
 11.9 Electrowinning and Electrorefining of Metals 326
 11.9.1 Metal Electrowinning and Refining from Aqueous Electrolytes ... 326
 11.9.2 Copper Electrowinning and Electrorefining 330
 11.9.3 Nickel Electrowinning ... 331
 11.9.4 Nickel from the Chloride Leach Process 333
 11.9.5 Nickel Refining ... 334
 11.9.6 Zinc Electrowinning .. 334
 11.9.7 Lead Electrorefining .. 335
 11.10 Metal Electrowinning from Molten Salt Electrolytes 335
 11.10.1 General Considerations ... 335
 11.10.2 Aluminium Production – the Hall–Heroult Process 336
 11.10.2.1 The Melt ... 336
 11.10.2.2 Electrode Reactions ... 338
 11.10.3 The Cell ... 339
 11.10.4 Alkali Metals from Chloride Melts 341
 11.10.5 Magnesium Electrolysis ... 342
 11.10.5.1 Production of the Feed Salt 343
 11.10.5.2 Magnesium Electrolysis Cells 344
 11.11 Organic Electrosynthesis Processes 345
 11.11.1 General Overview ... 345
 11.11.2 Cell Types Used in Commercial Electroorganic Synthesis 347
 11.11.3 Process and Reaction Techniques of Some Examples of Industrial Organic Electrosyntheses 349
 11.11.3.1 Adipodinitrile Production by the Monsanto/Baizer Process ... 349
 11.11.3.2 Electrosynthesis of Sebacic Diesters by Kolbe Synthesis ... 352
Chapter 11
Selected Electrochemical Procedures Outside the Chemical and Metallurgical Industries

11.12.1 Electrochemical Wastewater Treatment by Electrodeposition and by Electroosmosis

11.12.2 Electrochemical Surface Treatment and Shaping of Metals

11.12.3 Electrodialysis

11.12.4 Electrochemical Gridding

11.12.3 Electroreforming of Microdies and Microtools by the LIGA-Process

References

Further Reading

Chapter 12
Fuel Cells

12.1 Fuel Cells as Gas Supplied Batteries

12.2 Theoretical Efficiency of Hydrogen/Oxygen Fuel Cells

12.3 Fuel Cell Types

12.3.1 Low-Temperature Fuel Cells – Their Technological State

12.3.1.1 Phosphoric-Acid Cells

12.3.1.2 Membrane Cells

12.3.1.3 Direct and Indirect Methanol-Combusting Membrane Cells

12.3.1.4 Process Principles of the PAFCs and PEMFCs with Proton Conducting Electrolyte

12.3.2 High-Temperature Fuel Cells

12.3.2.1 Molten-Carbonate and Solid Oxide Fuel Cells

12.3.2.2 Process Schemes of MCFCs and SOFCs

12.3.2.3 Internal Reforming in High-Temperature Fuel Cells

12.3.3 Cell Technologies of MCFCs and SOFCs

12.3.3.1 Molten-Carbonate Fuel Cells

12.3.3.2 Solid Oxide Fuel Cells

12.3.3.3 The Westinghouse Technology
12.3.4 Flat-Plate Solid Oxide Cells ... 384
12.4 Current Voltage Curves of Different Fuel Cells 385
12.5 Fuel-Cell Systems .. 387
 12.5.1 Phosphoric-Acid Fuel Cell / PC 25 387
 12.5.2 Molten Carbonate Cells ... 390
 12.5.2.1 ERC-2 MW Plant ... 390
 12.5.2.2 Hot Module of MTU ... 390
 12.5.3 Proton Exchange Membrane Cells 391
 12.5.3.1 The Ballard Cell ... 392
 12.5.3.2 De Nora’s Cell ... 394

Further Reading ... 394

Subject Index ... 395
Electrochemical Engineering
Science and Technology in Chemical and Other Industries
Wendt, H.; Kreysa, G.
1999, XXI, 408 p., Hardcover
ISBN: 978-3-540-64386-9