Contents

Introduction – The Theory of Orbits
from Epicycles to “Chaos” 1

Chapter 1. Dynamics and Dynamical Systems – Quod Satis
1. **A. Dynamical Systems and Newtonian Dynamics** 16
 1.1 Dynamical Systems: Generalities 16
 1.2 Classification of Critical Points – Stability 20
 1.3 The n-Dimensional Oscillator 26

1. **B. Lagrangian Dynamics** 32
 1.4 Lagrange's Equations 32
 1.5 Ignorable Variables and Integration of Lagrange's Equations 37
 1.6 Noether’s Theorem 43
 1.7 An Application of Noether’s Theorem:
 The n-Dimensional Oscillator 50
 1.8 The Principle of Least Action in Jacobi Form 57

1. **C. Hamiltonian Dynamics and Hamilton–Jacobi Theory** 61
 1.9 The Canonical Equations 61
 1.10 The Integral Invariants – Liouville’s Theorem 65
 1.11 Poisson Brackets and Poisson’s Theorem –
 The Generation of New Integrals 73
 1.12 Canonical Transformations 76
 1.13 Generating Functions –
 Infinitesimal Canonical Transformations 82
 1.14 The Extended Phase Space 85
 1.15 The Hamilton–Jacobi Equation and the Problem of Separability
 ... 90
 1.16 Action–Angle Variables 98
 1.17 Separable Multiperiodic Systems –
 Uniqueness of the Action–Angle Variables 106
 1.18 Integrals in Involution –
 Liouville’s Theorem for Integrable Systems 113
 1.19 Lax’s Method – The Painlevé Property 117
Contents

Chapter 2. The Two-Body Problem

2.1 The Two-Body Problem and Kepler’s Three Laws 125
2.2 The Laplace–Runge–Lenz Vector 126
2.3 Bertrand’s Theorem and Related Questions 136
2.4 The Position of the Point on the Orbit 141
2.5 The Elements of the Orbit 147
2.6 The Problem of Regularization 156
2.7 Topology of the Two-Body Problem 162

Chapter 3. The N-Body Problem

3.1 Equations of Motion and the Existence Theorem 175
3.2 The Integrals of the Motion 178
3.3 The Singularities .. 184
3.4 Sundman’s Theorem .. 192
3.5 The Evolution of the System for $t \to \infty$ 198
3.6 The Virial Theorem .. 200
3.7 Particular Solutions of the N-Body Problem 209
3.8 Homographic Motions and Central Configurations 216

Chapter 4. The Three-Body Problem

4.1 The General Three-Body Problem 237
4.2 Existence of the Solution – Sundman and Levi-Civita Regularization 238
4.3 The Restricted Three-Body Problem 244
4.4 The Stability of the Equilibrium Solutions 256
4.5 The Delaunay Elements for the Restricted Three-Body Problem 265
4.6 The Regularization of the Restricted Three-Body Problem ... 272
4.7 Extensions and Generalizations of the Restricted Problem 279

Chapter 5. Orbits in Given Potentials

5.1 Introduction .. 301
5.2 Orbits in Spherically Symmetric Potentials 302
5.3 Orbits in Isochronal Potentials 306
5.4 Elliptical Coordinates and Stäckel’s Theorem 316
5.5 Planar Potentials ... 323
5.6 The Problem of Two Fixed Centres in the Plane 334
5.7 Axially Symmetric Potentials – Motion in the Potential of the Earth 341
5.8 Orbits in Triaxial Potentials 349
5.9 Configurational Invariants 352

Mathematical Appendix

A.1 Spherical Trigonometry 363
<table>
<thead>
<tr>
<th>Contents</th>
<th>XIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.2 Curvilinear Coordinate Systems</td>
<td>365</td>
</tr>
<tr>
<td>A.3 Riemannian Geometry</td>
<td>370</td>
</tr>
<tr>
<td>Bibliographical Notes</td>
<td>375</td>
</tr>
<tr>
<td>Name Index</td>
<td>385</td>
</tr>
<tr>
<td>Subject Index</td>
<td>389</td>
</tr>
</tbody>
</table>
Theory of Orbits
Volume 1: Integrable Systems and Non-perturbative Methods
Boccaletti, D.; Pucacco, P.G.
1996, XIII, 392 p., Hardcover
ISBN: 978-3-540-58963-1