Inhaltsverzeichnis

1 Einleitung .. 1
 1.1 Motivation .. 1
 1.2 Entwurfsmethodik ... 7
 1.2.1 Erfassen und simulieren 7
 1.2.2 Beschreiben und synthetisieren 8
 1.2.3 Spezifizieren, explorieren und verfeinern 9
 1.3 Abstraktion und Entwurfsrepräsentationen 10
 1.3.1 Modelle .. 10
 1.3.2 Synthese .. 12
 1.3.3 Optimierung .. 26
 1.4 Übungen .. 28

2 Modellierung .. 37
 2.1 Einleitung .. 37
 2.2 Klassifikation von Modellen 39
 2.3 Petri-Netzmodell ... 40
 2.3.1 Dynamische Eigenschaften von Petri-Netzen 43
 2.4 Kontrollflussmodelle ... 45
 2.4.1 Endliche Automaten (FSMs) 45
 2.4.2 Erweiterte Zustandsmaschinenmodelle 47
 2.4.3 Hierarchische, nebeneinläufige Zustandsmaschinen 49
 2.4.4 Statecharts .. 49
 2.5 Datenflussmodelle .. 54
 2.5.1 Datenflussgraphen 54
 2.5.2 Markierte Graphen 55
 2.5.3 Synchronen Datenflussgraphen (SDF) 56
 2.6 Erweiterte Datenflussmodelle 60
 2.6.1 Verklemmungen in SDF-Graphen 60
 2.6.2 Reduktion des SDF-Modells auf markierte Graphen 62
 2.6.3 Zyklostatischer Datenfluss 63
 2.6.4 Dynamische Datenflussmodelle 64
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7</td>
<td>Strukturorientierte Modelle</td>
<td>66</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Komponenten-Verbindungsdiagramm (CCD)</td>
<td>66</td>
</tr>
<tr>
<td>2.8</td>
<td>Heterogene Modelle</td>
<td>66</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Kontroll-Datenflussgraphen (CDFGs)</td>
<td>68</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Modellierung in SystemCoDesigner</td>
<td>74</td>
</tr>
<tr>
<td>2.9</td>
<td>Können Programmiersprachen mehr?</td>
<td>79</td>
</tr>
<tr>
<td>2.10</td>
<td>Literaturhinweise</td>
<td>81</td>
</tr>
<tr>
<td>2.11</td>
<td>Übungen</td>
<td>86</td>
</tr>
<tr>
<td>3</td>
<td>Synthese</td>
<td>93</td>
</tr>
<tr>
<td>3.1</td>
<td>Fundamentale Syntheseprobleme</td>
<td>93</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Ablaufplanung</td>
<td>94</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Allokation</td>
<td>96</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Bindung</td>
<td>97</td>
</tr>
<tr>
<td>3.2</td>
<td>Implementierung</td>
<td>98</td>
</tr>
<tr>
<td>3.3</td>
<td>Problemklassen</td>
<td>99</td>
</tr>
<tr>
<td>3.4</td>
<td>Übungen</td>
<td>101</td>
</tr>
<tr>
<td>4</td>
<td>Ablaufplanung</td>
<td>103</td>
</tr>
<tr>
<td>4.1</td>
<td>Klassifikation von Ablaufplanungsproblemen</td>
<td>103</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Statische und dynamische Ablaufplanung</td>
<td>103</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Prämption</td>
<td>104</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Datenabhängigkeiten</td>
<td>104</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Ressourcenbeschränkungen</td>
<td>104</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Periodische Ablaufplanung</td>
<td>104</td>
</tr>
<tr>
<td>4.2</td>
<td>Klassifikation von Algorithmen</td>
<td>105</td>
</tr>
<tr>
<td>4.3</td>
<td>Ablaufplanung ohne Ressourcenbeschränkungen</td>
<td>106</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Der ASAP-Algorithmus</td>
<td>106</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Der ALAP-Algorithmus</td>
<td>107</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Ablaufplanung mit Zeitbeschränkungen</td>
<td>108</td>
</tr>
<tr>
<td>4.4</td>
<td>Ablaufplanung mit Ressourcenbeschränkungen</td>
<td>112</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Erweiterte ASAP- und ALAP-Verfahren</td>
<td>113</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Listscheduling</td>
<td>113</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Force-directed scheduling</td>
<td>117</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Ganzzahlige lineare Programmierung</td>
<td>121</td>
</tr>
<tr>
<td>4.5</td>
<td>Periodische Ablaufplanungsprobleme</td>
<td>124</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Iterative Algorithmen</td>
<td>125</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Iterative Ablaufplanung ohne Ressourcenbeschränkungen</td>
<td>132</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Verfahren zur Reduktion von P_{min}</td>
<td>138</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Iterative Ablaufplanung mit Ressourcenbeschränkungen</td>
<td>143</td>
</tr>
<tr>
<td>4.5.5</td>
<td>ILP-Modell zur Ablaufplanung iterativer Algorithmen</td>
<td>143</td>
</tr>
<tr>
<td>4.5.6</td>
<td>Beispiel: FIR-Filter</td>
<td>145</td>
</tr>
<tr>
<td>4.6</td>
<td>Ressourcetypbindung</td>
<td>147</td>
</tr>
<tr>
<td>4.7</td>
<td>Dynamische Ablaufplanung</td>
<td>149</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Definitionen</td>
<td>151</td>
</tr>
</tbody>
</table>
5 Bindung ... 181
5.1 Graphentheoretische Betrachtung von Bindungsproblemen 181
5.2 Bindung nach Ablaufplanung 185
5.3 Periodische Bindungsprobleme 188
5.4 Bindung hierarchischer Graphen 192
5.5 Bindung vor Ablaufplanung 192
5.6 Partitionierungsalgorithmen 193
5.6.1 Konstruktive Verfahren zur Partitionierung 195
5.6.2 Iterative Verfahren zur Partitionierung 198
5.6.3 Evolutionäre Algorithmen 199
5.6.4 Partitionierung mit linearer Programmierung 199
5.6.5 Algorithmen zur HW/SW-Partitionierung 200
5.7 Entwurfssysteme zur Partitionierung 202
5.7.1 Funktionale Partitionierung im Hardwareentwurf 203
5.7.2 ILP-basierte Ansätze für Multi-Chip-Entwürfe 205
5.7.3 Entwurfssysteme zur Hardware/Software-Partitionierung . 206
5.7.4 ILP-basierte Ansätze zur HW/SW-Partitionierung 208
5.8 Literaturhinweise und Zusammenfassung 208
5.9 Übungen .. 210

6 Architektursynthese ... 217
6.1 Was ist Architektursynthese? 218
6.1.1 Operationswerk .. 219
6.1.2 Steuerwerk ... 221
6.2 Schätzung der Entwurfsqualität 223
6.2.1 Kostenmaße ... 224
6.2.2 Performanzmaße ... 224
6.2.3 Abschätzung der Taktperiode T 227
6.2.4 Abschätzung der Latenz L 229
6.2.5 Abschätzung der Ausführungszeit 229
6.2.6 Abschätzung der Kosten 229
6.3 Energie- und Leistungsverbrauchsmanagement 232
6.3.1 Energie- und Leistungsverbrauch 233
6.3.2 Leistungseffizienz 233
6.3.3 Quellen des Leistungsverbrauchs 236
6.3.4 Strukturelle Maßnahmen zur Leistungsverbrauchsreduktion. 237
6.3.5 Maßnahmen auf Verhaltensebene zur Reduktion des Leistungsverbrauchs .. 240
6.3.6 Schätzung des mittleren Leistungsverbrauchs 243
6.4 Notation und Problemstellung der Architekturensemble ... 246
6.5 Spezialoperationen und Spezialressourcen 250
6.5.1 Verkettung funktionaler Operatoren 250
6.5.2 Module mit Fließbandverarbeitung 252
6.5.3 Funktionale Fließbandverarbeitung und Schleifenfaltung . 252
6.6 Verfahren zur Architektursynthese 255
6.6.1 Erweiterung bekannter Ablaufplanungsverfahren 255
6.6.2 ILP-Modelle zur Architektursynthese 255
6.7 ILP-Modelle zur Architektursynthese 257
6.7.1 Zeitschlitzzmodelle 257
6.7.2 Flussmodell ... 262
6.8 Das Flussmodell ... 266
6.9 Analyse des Flussmodells 271
6.9.1 Polyedertheorie ... 271
6.9.2 Analyse des Lösungszytophes des Fluss-ILP 273
6.10 Verbesserung der Modellstruktur 280
6.10.1 Elimination von Flussvariablen 280
6.10.2 Anpassung der Konstanten \(\delta(v_i, v_j, k) \) 283
6.10.3 Elimination redundanter Ungleichungen 285
6.10.4 Hinzufügen gültiger Ungleichungen 286
6.11 Fließbandverarbeitung 288
6.11.1 Ressourcen mit Fließbandverarbeitung 288
6.11.2 Funktionale Fließbandverarbeitung und Schleifenfaltung . 289
6.11.3 ASAP- und ALAP-Zeiten bei iterativer Ablaufplanung . 292
6.11.4 Ablaufplanung mit vollständiger Bindung 293
6.12 Relaxationsverfahren 296
6.13 Beispiele .. 297
6.13.1 Löser einer gewöhnlichen Differenzialgleichung 297
6.13.2 Elliptisches Wellenfilter 299
6.14 Literaturhinweise und Werkzeuge 301
6.15 Übungen .. 309

7 Softwareensynthese ... 315
7.1 Merkmale und Klassifikation von Prozessoren 316
7.1.1 Klassifikation von Prozessoren 317
7.1.2 Kriterienbasierte Prozessorwahl 319
7.1.3 Architekturparameter von ASIPs 320
7.2 Einführung Compiler .. 322
7.2.1 Umgebungen ... 323
7.2.2 Sprachkonzepte ... 324
7.2.3 Analyse von Quellprogrammen 324
7.2.4 Phasen (Analyse, Codegenerierung, Optimierung) 328
7.3 Zwischendarstellungen .. 331
7.3.1 Drei-Adress-Code .. 331
7.3.2 Kontrollflussgraphen und DAGs 334
7.4 Codegenerierung und Codeoptimierung 338
7.4.1 Eine einfache Zielsprache 340
7.4.2 Allokation, Ablaufplanung und Bindung 341
7.5 Registervergabe und Registerbindung 346
7.5.1 Lebenszeitenanalyse .. 346
7.5.2 Registervergabe und -bindung durch Graphfärbung 348
7.5.3 Globale Registervergabe ... 349
7.6 Optimale Registerbindung mit ILP-Techniken 352
7.6.1 Existierende Ansätze .. 352
7.6.2 Exakte minimale Färbung mit ILP-Modell 356
7.6.3 k-Färbung und Registerabwurf 358
7.6.4 Optimale k-Färbung mit ILP-Modell 359
7.6.5 Modellierung von Register-Register-Umspeicherungen 362
7.6.6 Bestimmung optimaler Registerabwurfzeitpunkte 365
7.6.7 Modellierung heterogener Registerstrukturen 368
7.6.8 Ausblicke ... 369
7.7 CodeSelektion: Mustererkennung und Baumtransformation 370
7.8 Dynamische Programmierung ... 375
7.8.1 Prinzip der dynamischen Programmierung 376
7.8.2 Codegenerierung mit dynamischer Programmierung 377
7.9 Maschinenunabhängige Optimierung 380
7.9.1 Transformationen auf Grundblöcken 381
7.9.2 Globale Optimierung .. 383
7.10 Maschinenabhängige Optimierung 384
7.11 Softwaresynthese für eingebettete Prozessoren 386
7.11.1 Anpassbarkeit von Compilern 386
7.11.2 Unterschiede der Codegenerierung 387
7.11.3 Retargetierbare Compiler für RISC/CISC 388
7.11.4 Retargetierbare Compiler für DSPs 390
7.11.5 Retargetierbare Compiler für VLIW-artige Architekturen . 393
7.11.6 Kommerzielle retargetierbare Compiler 400
7.12 Softwaresynthese auf Modulebene 401
7.12.1 Betriebssysteme .. 401
7.12.2 Echtzeitbetriebssysteme 403
7.12.3 Codegenerierung für datenflussdominante Systeme 404
7.12.4 Externe Ereignisse .. 412
7.12.5 Ressourcenzugriffsprotokolle und Ablaufplanungsanomalien 415
7.13 Literaturhinweise und Zusammenfassung 418
7.14 Übungen .. 422
8 Systemsynthese .. 427
 8.1 Modell der Systemsynthese .. 430
 8.1.1 Spezifikation eines Problems 431
 8.1.2 Spezifikation von Zielarchitekturen 431
 8.1.3 Spezifikation von Abbildungen 433
 8.1.4 Implementierung .. 434
 8.2 Entwurfsraumexploration ... 439
 8.2.1 Optimierungsstrategien und Zielfunktionen 442
 8.2.2 Schätzung der Entwurfsqualität 445
 8.2.3 Strategien zur Überdeckung und zum Beschneiden des
 Entwurfsraums ... 447
 8.3 Entwurfsraumexploration mit evolutionären Algorithmen 450
 8.3.1 Optimierung mit evolutionären Algorithmen 452
 8.3.2 Codierung von Implementierungen 454
 8.3.3 Fitnessfunktionen und Beschränkungen 460
 8.3.4 Parameter des evolutionären Algorithmus 463
 8.3.5 Fallstudie .. 463
 8.4 Modellerweiterungen .. 471
 8.4.1 Mehrstufiger Spezifikationsgraph 471
 8.4.2 Hierarchische Spezifikationsgraphen ☒ 473
 8.5 Verbesserte Überdeckung des Entwurfsraums ☒ 479
 8.5.1 Symbolische Techniken in der Entwurfsraumexploration ... 479
 8.5.2 Pareto-Front-Arithmetik 485
 8.6 Entwurfssysteme zur Systemsynthese 490
 8.7 Zusammenfassung und Literaturhinweise 493
 8.8 Übungen .. 498

Anhang ... 501

Notation ... 501
 A.1 Logik .. 501
 A.2 Mengen .. 502
 A.3 Relationen und Funktionen 502
 A.4 Lineare Algebra .. 503
 A.5 Ganzzahlige Algebra ... 503
 A.6 Graphen ... 503
 A.6.1 Ungerichtete Graphen ... 504
 A.6.2 Gerichtete Graphen .. 506
 A.6.3 Perfekte Graphen ... 507
 A.7 Polyedertheorie .. 508
 A.8 Kombinatorische Optimierungsprobleme 510
 A.8.1 Entscheidungsprobleme und Optimierungsprobleme 510
 A.8.2 Algorithmen .. 510
 A.8.3 Klassifikation von Problemen 511
Fundamentale Optimierungsverfahren
 B.1 Lineare und ganzzahlige lineare Programmierung
 B.2 Simulated annealing
 B.3 Evolutionäre Algorithmen
 B.4 Mehrzieloptimierung
 B.4.1 Leistungsbewertung von Optimierungsverfahren
 B.4.2 Evolutionäre Algorithmen für die Mehrzieloptimierung

Graphenalgorithmen
 C.1 Kürzeste- und Längste-Pfad-Probleme
 C.1.1 KPP auf azyklischen Graphen: Topologische Sortierung
 C.1.2 KPP auf zyklischen Graphen
 C.1.3 LPP
 C.1.4 Lösung von LPP (KPP) durch lineare Programmierung
 C.2 Graphfärbung
 C.2.1 Färbung triangulierter Graphen
 C.2.2 Periodische Färbungsprobleme
 C.3 Cliquepartitionierung

Literatur

Sachverzeichnis
Digitale Hardware/Software-Systeme
Synthese und Optimierung
Teich, J.; Haubelt, C.
2007, XV, 594 S., Softcover
ISBN: 978-3-540-46822-6