Inhaltsverzeichnis

1 Einleitung mit Bemerkungen zur historischen Entwicklung 1
1.1 Das Potential des Schwerefeldes 2
1.2 Die Laplacegleichung und die Poissongleichung 4
1.3 Das Neumannsche und das Dirichletsche Randwertproblem ... 7
1.4 Das Dirichletsche Randwertproblem im 19. Jahrhundert 10

2 Die Laplacegleichung .. 19
2.1 Harmonische Funktionen und Mittelwerteigenschaft 19
2.2 Liouville- und Harnackeigenschaft 28
2.3 Das Maximum-Minimumprinzip 31
2.4 Analytizität .. 35
2.5 Erweiterung: Helmholtzsche Schwingungsgleichung 39
2.6 Ausblick: Elliptische Gleichungen 2. Ordnung 43
2.7 Exkurs: Eindeutige Fortsetzbarkeit 47
Aufgaben ... 53

3 Das Dirichletproblem für harmonische Funktionen 59
3.1 Einführung; Eindeutigkeit, Stabilität und der Fall der Kreisscheibe .. 59
3.2 Die Poissonsche Integralformel löst das Dirichletproblem für die Kugel .. 63
3.3 Superharmonische Funktionen und die Perronsche Lösungsmethode für beschränktes $\Omega \subseteq \mathbb{R}^N$ 67
3.4 Über den lokalen Charakter der Barrierenforderung. Kriterien. 75
3.5 Behebbare Singularitäten. Dirichletprobleme ohne Lösung ... 78
3.6 Unbeschränkte Gebiete .. 82
3.7 Der Satz von Giesecke. Bemerkungen zum Dirichletschen Prinzip ... 92
Aufgaben ... 97
4 Die Poissongleichung $-\Delta u = f$.. 103
 4.1 Orientierende Bemerkungen zum Newtonpotential 103
 4.2 Differenzierbarkeits Eigenschaften des Newtonpotentials und
 Lösung des Dirichletproblems 107
 4.3 Petrinis Gegenbeispiel .. 115
 4.4 Die Greensche Funktion zum Dirichletproblem 118
 4.5 Die Symmetrie der Greenschen Funktion 123
 4.6 Abschätzungen für die Ableitungen der Greenschen Funktion 126
 4.7 Das Newtonpotential verallgemeinernde singuläre Integrale ... 134
 4.8 Das Dirichletproblem für $-\Delta u = f$ bei am Rand
 unbeschränktem f ... 142
 4.9 Erweiterung: Die Greensche Funktion für $-\Delta + 1$ 147
 Aufgaben ... 161

5 Die Greensche Funktion für die Kugel mit Anwendungen . . 165
 5.1 Die Greensche Funktion für den Halbraum, die Kugel und ihr
 Äußeres ... 165
 5.2 Einschub: Harmonische Funktionen mit einer isolierten
 Singularität ... 170
 5.3 Die 2. Ableitungen des Greenpotentials für die Kugel 172
 5.4 Eine erste Anwendung: Die lokale Lösbarkeit des
 Beltrami-Systems ... 184
 5.5 Das Dirichletproblem für die Kugel bei kleiner Abweichung
 des Hauptteils vom Laplaceoperator 191
 5.6 Die Methode von Leray und Schauder am Beispiel des
 semilinearen Dirichletproblems in der Kugel 197
 Aufgaben ... 202

6 Die Fredholmsche Alternative für das Dirichletproblem 207
 6.1 Die Sätze von Fredholm und ihre Verallgemeinerung,
 Resolvente und Spektrum 207
 6.2 Das Dirichletproblem für $(-\Delta + a - \lambda)u = f$ 211
 6.3 Die Gleichung $-\Delta u + \sum_{i=1}^{N} a_i u_{x_i} + (a - \lambda)u = f$
 mit am Rand unbeschränkten a und f 224
 Aufgaben ... 230

7 Der Kelloggsche Satz ... 233
 7.1 Vorbereitungen .. 234
 7.2 Umformulierung und Beweis des Kelloggschen Satzes 246
 7.3 Zwei A-Priori-Ungleichungen im Gefolge des Kelloggschen
 Satzes ... 252
 Aufgaben ... 260
8 Die globale A-Priori-Abschätzung von Schauder und ihre Anwendung auf lineare und quasilineare Dirichletprobleme 263
8.1 Differentialoperatoren mit konstanten Koeffizienten 264
8.2 Variable Koeffizienten .. 267
8.3 Die Kontinuitätsmethode zur Lösung des allgemeinen linearen Dirichletproblems in $C^{2,\alpha}(\Omega)$. Die Fredholmsche Alternative ... 272
8.4 Ausblick: Das Dirichletproblem für die quasilineare elliptische Differentialgleichung 2. Ordnung nach der Methode von Leray-Schauder ... 277
Aufgaben ... 279

9 Innere Abschätzungen und innere Regularität 281
9.1 Eine innere A-Priori-Abschätzung und ihre Anwendung 281
9.2 Innere Regularität von C^2-Lösungen linearer und quasilinearer elliptischer Gleichungen nach E. Hopf 287
Aufgaben ... 298

10 Schwache Lösungen .. 299
10.1 Bemerkungen zur historischen Entwicklung 299
10.2 Existenz schwacher Lösungen 304
10.3 Innere Regularität schwacher Lösungen 318
10.4 Randregularität für Lösungen verallgemeinerter Dirichletprobleme ... 328
10.5 Rechtfertigung des Dirichletschen Prinzips 332
Aufgaben ... 337

A Partielle Integration. Glättungsoperatoren. 343
B Integration über Sphären .. 355
C Hölderstetigkeit ... 363

Symbolverzeichnis ... 371
Literaturverzeichnis .. 375
Personenverzeichnis .. 395
Sachverzeichnis ... 399
Elliptische Differentialgleichungen zweiter Ordnung
Eine Einführung mit historischen Bemerkungen
Wienholtz, E.; Kalf, H.; Kriecherbauer, Th.
2009, XI, 401 S., Softcover
ISBN: 978-3-540-45717-6