Table of Contents

Volume A

1 Introduction ... 1
 1.1 Introduction ... 1
 1.2 Matchings ... 2
 1.3 But what about nonbipartite graphs? 4
 1.4 Hamiltonian circuits and the traveling salesman problem ... 5
 1.5 Historical and further notes 6
 1.5a Historical sketch on polyhedral combinatorics 6
 1.5b Further notes .. 8

2 General preliminaries .. 9
 2.1 Sets .. 9
 2.2 Orders ... 11
 2.3 Numbers .. 11
 2.4 Vectors, matrices, and functions 11
 2.5 Maxima, minima, and infinity 14
 2.6 Fekete’s lemma ... 14

3 Preliminaries on graphs .. 16
 3.1 Undirected graphs .. 16
 3.2 Directed graphs .. 28
 3.3 Hypergraphs .. 36
 3.3a Background references on graph theory 37

4 Preliminaries on algorithms and complexity 38
 4.1 Introduction ... 38
 4.2 The random access machine 39
 4.3 Polynomial-time solvability 39
 4.4 P ... 40
 4.5 NP ... 40
 4.6 co-NP and good characterizations 42
 4.7 Optimization problems ... 42
 4.8 NP-complete problems .. 43
 4.9 The satisfiability problem .. 44
Table of Contents

4.10 NP-completeness of the satisfiability problem 44
4.11 NP-completeness of some other problems 46
4.12 Strongly polynomial-time ... 47
4.13 Lists and pointers ... 48
4.14 Further notes ... 49
 4.14a Background literature on algorithms and complexity . 49
 4.14b Efficiency and complexity historically 49

5 Preliminaries on polyhedra and linear and integer programming .. 59
 5.1 Convexity and halfspaces 59
 5.2 Cones ... 60
 5.3 Polyhedra and polytopes 60
 5.4 Farkas' lemma .. 61
 5.5 Linear programming ... 61
 5.6 Faces, facets, and vertices 63
 5.7 Polarity ... 65
 5.8 Blocking polyhedra ... 65
 5.9 Antiblocking polyhedra 67
 5.10 Methods for linear programming 67
 5.11 The ellipsoid method 68
 5.12 Polyhedra and NP and co-NP 71
 5.13 Primal-dual methods .. 72
 5.14 Integer linear programming 73
 5.15 Integer polyhedra ... 74
 5.16 Totally unimodular matrices 75
 5.17 Total dual integrality 76
 5.18 Hilbert bases and minimal TDI systems 81
 5.19 The integer rounding and decomposition properties 82
 5.20 Box-total dual integrality 83
 5.21 The integer hull and cutting planes 83
 5.21a Background literature 84

Part I: Paths and Flows ... 85

6 Shortest paths: unit lengths 87
 6.1 Shortest paths with unit lengths 87
 6.2 Shortest paths with unit lengths algorithmically:
 breadth-first search 88
 6.3 Depth-first search .. 89
 6.4 Finding an Eulerian orientation 91
 6.5 Further results and notes 91
 6.5a All-pairs shortest paths in undirected graphs 91
 6.5b Complexity survey 93
Table of Contents

6.5c Ear-decomposition of strongly connected digraphs . . . 93
6.5d Transitive closure .. 94
6.5e Further notes ... 94

7 Shortest paths: nonnegative lengths 96
 7.1 Shortest paths with nonnegative lengths 96
 7.2 Dijkstra's method ... 97
 7.3 Speeding up Dijkstra's algorithm with k-heaps 98
 7.4 Speeding up Dijkstra's algorithm with Fibonacci heaps ... 99
 7.5 Further results and notes 101
 7.5a Weakly polynomial-time algorithms 101
 7.5b Complexity survey for shortest paths with
 nonnegative lengths 103
 7.5c Further notes ... 105

8 Shortest paths: arbitrary lengths 107
 8.1 Shortest paths with arbitrary lengths but no negative
 circuits .. 107
 8.2 Potentials ... 107
 8.3 The Bellman-Ford method 109
 8.4 All-pairs shortest paths 110
 8.5 Finding a minimum-mean length directed circuit 111
 8.6 Further results and notes 112
 8.6a Complexity survey for shortest path without
 negative-length circuits 112
 8.6b NP-completeness of the shortest path problem 114
 8.6c Nonpolyminimality of Ford's method 115
 8.6d Shortest and longest paths in acyclic graphs 116
 8.6e Bottleneck shortest path 117
 8.6f Further notes ... 118
 8.6g Historical notes on shortest paths 119

9 Disjoint paths .. 131
 9.1 Menger's theorem ... 131
 9.1a Other proofs of Menger's theorem 133
 9.2 Path packing algorithmically 134
 9.3 Speeding up by blocking path packings 135
 9.4 A sometimes better bound 136
 9.5 Complexity of the vertex-disjoint case 137
 9.6 Further results and notes 138
 9.6a Complexity survey for the disjoint s–t paths
 problem ... 138
 9.6b Partially disjoint paths 140
 9.6c Exchange properties of disjoint paths 140
 9.6d Further notes ... 141
Table of Contents

9.6e Historical notes on Menger’s theorem 142

10 Maximum flow ... 148
10.1 Flows: concepts ... 148
10.2 The max-flow min-cut theorem 150
10.3 Paths and flows ... 151
10.4 Finding a maximum flow 151
10.4a Nontermination for irrational capacities 152
10.5 A strongly polynomial bound on the number of iterations 153
10.6 Dinits’ $O(n^2m)$ algorithm 154
10.6a Karzanov’s $O(n^3)$ algorithm 155
10.7 Goldberg’s push-relabel method 156
10.8 Further results and notes 159
10.8a A weakly polynomial bound 159
10.8b Complexity survey for the maximum flow problem ... 160
10.8c An exchange property 162
10.8d Further notes ... 162
10.8e Historical notes on maximum flow 164

11 Circulations and transshipments 170
11.1 A useful fact on arc functions 170
11.2 Circulations .. 171
11.3 Flows with upper and lower bounds 172
11.4 b-transshipments 173
11.5 Upper and lower bounds on excess f 174
11.6 Finding circulations and transshipments algorithmically 175
11.6a Further notes ... 176

12 Minimum-cost flows and circulations 177
12.1 Minimum-cost flows and circulations 177
12.2 Minimum-cost circulations and the residual graph D_f 178
12.3 Strongly polynomial-time algorithm 179
12.4 Related problems 182
12.4a A dual approach 183
12.4b A strongly polynomial-time algorithm using capacity-scaling 186
12.5 Further results and notes 190
12.5a Complexity survey for minimum-cost circulation 190
12.5b Min-max relations for minimum-cost flows and circulations 191
12.5c Dynamic flows 192
12.5d Further notes 195
Table of Contents

13 Path and flow polyhedra and total unimodularity 198
 13.1 Path polyhedra ... 198
 13.1a Vertices, adjacency, and facets 202
 13.1b The s - t connector polytope 203
 13.2 Total unimodularity 204
 13.2a Consequences for flows 205
 13.2b Consequences for circulations 207
 13.2c Consequences for transshipments 207
 13.2d Unions of disjoint paths and cuts 210
 13.3 Network matrices 213
 13.4 Cross-free and laminar families 214

14 Partially ordered sets and path coverings 217
 14.1 Partially ordered sets 217
 14.2 Dilworth's decomposition theorem 218
 14.3 Path coverings ... 219
 14.4 The weighted case 220
 14.5 The chain and antichain polytopes 221
 14.5a Path coverings algorithmically 222
 14.6 Unions of directed cuts and antichains 224
 14.6a Common saturating collections of chains 226
 14.7 Unions of directed paths and chains 227
 14.7a Common saturating collections of antichains .. 229
 14.7b Conjugacy of partitions 230
 14.8 Further results and notes 232
 14.8a The Gallai-Milgram theorem 232
 14.8b Partially ordered sets and distributive lattices 233
 14.8c Maximal chains 235
 14.8d Further notes 236

15 Connectivity and Gomory-Hu trees 237
 15.1 Vertex-, edge-, and arc-connectivity 237
 15.2 Vertex-connectivity algorithmically 239
 15.2a Complexity survey for vertex-connectivity 241
 15.2b Finding the 2-connected components 242
 15.3 Arc- and edge-connectivity algorithmically 243
 15.3a Complexity survey for arc- and edge-connectivity 246
 15.3b Finding the 2-edge-connected components 247
 15.4 Gomory-Hu trees .. 248
 15.4a Minimum-requirement spanning tree 251
 15.5 Further results and notes 252
 15.5a Ear-decomposition of undirected graphs 252
 15.5b Further notes 253
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Cardinality bipartite matching and vertex cover</td>
<td>259</td>
</tr>
<tr>
<td>16.1</td>
<td>M-augmenting paths</td>
<td>259</td>
</tr>
<tr>
<td>16.2</td>
<td>Frobenius' and König's theorems</td>
<td>260</td>
</tr>
<tr>
<td>16.2a</td>
<td>Frobenius' proof of his theorem</td>
<td>262</td>
</tr>
<tr>
<td>16.2b</td>
<td>Linear-algebraic proof of Frobenius' theorem</td>
<td>262</td>
</tr>
<tr>
<td>16.2c</td>
<td>Rizzi's proof of König's matching theorem</td>
<td>263</td>
</tr>
<tr>
<td>16.3</td>
<td>Maximum-size bipartite matching algorithm</td>
<td>263</td>
</tr>
<tr>
<td>16.4</td>
<td>An O(n^{1/2}m) algorithm</td>
<td>264</td>
</tr>
<tr>
<td>16.5</td>
<td>Finding a minimum-size vertex cover</td>
<td>265</td>
</tr>
<tr>
<td>16.6</td>
<td>Matchings covering given vertices</td>
<td>265</td>
</tr>
<tr>
<td>16.7</td>
<td>Further results and notes</td>
<td>267</td>
</tr>
<tr>
<td>16.7a</td>
<td>Complexity survey for cardinality bipartite matching</td>
<td>267</td>
</tr>
<tr>
<td>16.7b</td>
<td>Finding perfect matchings in regular bipartite graphs</td>
<td>267</td>
</tr>
<tr>
<td>16.7c</td>
<td>The equivalence of Menger's theorem and König's theorem</td>
<td>275</td>
</tr>
<tr>
<td>16.7d</td>
<td>Equivalent formulations in terms of matrices</td>
<td>276</td>
</tr>
<tr>
<td>16.7e</td>
<td>Equivalent formulations in terms of partitions</td>
<td>276</td>
</tr>
<tr>
<td>16.7f</td>
<td>On the complexity of bipartite matching and vertex cover</td>
<td>277</td>
</tr>
<tr>
<td>16.7g</td>
<td>Further notes</td>
<td>277</td>
</tr>
<tr>
<td>16.7h</td>
<td>Historical notes on bipartite matching</td>
<td>278</td>
</tr>
<tr>
<td>17</td>
<td>Weighted bipartite matching and the assignment problem</td>
<td>285</td>
</tr>
<tr>
<td>17.1</td>
<td>Weighted bipartite matching</td>
<td>285</td>
</tr>
<tr>
<td>17.2</td>
<td>The Hungarian method</td>
<td>286</td>
</tr>
<tr>
<td>17.3</td>
<td>Perfect matching and assignment problems</td>
<td>288</td>
</tr>
<tr>
<td>17.4</td>
<td>Finding a minimum-size w-vertex cover</td>
<td>289</td>
</tr>
<tr>
<td>17.5</td>
<td>Further results and notes</td>
<td>290</td>
</tr>
<tr>
<td>17.5a</td>
<td>Complexity survey for maximum-weight bipartite matching</td>
<td>290</td>
</tr>
<tr>
<td>17.5b</td>
<td>Further notes</td>
<td>290</td>
</tr>
<tr>
<td>17.5c</td>
<td>Historical notes on weighted bipartite matching and optimum assignment</td>
<td>292</td>
</tr>
<tr>
<td>18</td>
<td>Linear programming methods and the bipartite matching polytope</td>
<td>301</td>
</tr>
<tr>
<td>18.1</td>
<td>The matching and the perfect matching polytope</td>
<td>301</td>
</tr>
<tr>
<td>18.2</td>
<td>Totally unimodular matrices from bipartite graphs</td>
<td>303</td>
</tr>
<tr>
<td>18.3</td>
<td>Consequences of total unimodularity</td>
<td>304</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>18.4</td>
<td>The vertex cover polytope</td>
<td>305</td>
</tr>
<tr>
<td>18.5</td>
<td>Further results and notes</td>
<td>305</td>
</tr>
<tr>
<td>18.5a</td>
<td>Derivation of König’s matching theorem from the matching polytope</td>
<td>305</td>
</tr>
<tr>
<td>18.5b</td>
<td>Dual, primal-dual, primal?</td>
<td>305</td>
</tr>
<tr>
<td>18.5c</td>
<td>Adjacency and diameter of the matching polytope</td>
<td>307</td>
</tr>
<tr>
<td>18.5d</td>
<td>The perfect matching space of a bipartite graph</td>
<td>308</td>
</tr>
<tr>
<td>18.5e</td>
<td>Up and down hull of the perfect matching polytope</td>
<td>309</td>
</tr>
<tr>
<td>18.5f</td>
<td>Matchings of given size</td>
<td>310</td>
</tr>
<tr>
<td>18.5g</td>
<td>Stable matchings</td>
<td>311</td>
</tr>
<tr>
<td>18.5h</td>
<td>Further notes</td>
<td>314</td>
</tr>
<tr>
<td>19</td>
<td>Bipartite edge cover and stable set</td>
<td>315</td>
</tr>
<tr>
<td>19.1</td>
<td>Matchings, edge covers, and Gallai’s theorem</td>
<td>315</td>
</tr>
<tr>
<td>19.2</td>
<td>The König-Rado edge cover theorem</td>
<td>317</td>
</tr>
<tr>
<td>19.3</td>
<td>Finding a minimum-weight edge cover</td>
<td>317</td>
</tr>
<tr>
<td>19.4</td>
<td>Bipartite edge covers and total unimodularity</td>
<td>318</td>
</tr>
<tr>
<td>19.5</td>
<td>The edge cover and stable set polytope</td>
<td>318</td>
</tr>
<tr>
<td>19.5a</td>
<td>Some historical notes on bipartite edge covers</td>
<td>319</td>
</tr>
<tr>
<td>20</td>
<td>Bipartite edge-colouring</td>
<td>321</td>
</tr>
<tr>
<td>20.1</td>
<td>Edge-colourings of bipartite graphs</td>
<td>321</td>
</tr>
<tr>
<td>20.1a</td>
<td>Edge-colouring regular bipartite graphs</td>
<td>322</td>
</tr>
<tr>
<td>20.2</td>
<td>The capacitated case</td>
<td>322</td>
</tr>
<tr>
<td>20.3</td>
<td>Edge-colouring polyhedrally</td>
<td>323</td>
</tr>
<tr>
<td>20.4</td>
<td>Packing edge covers</td>
<td>324</td>
</tr>
<tr>
<td>20.5</td>
<td>Balanced colours</td>
<td>325</td>
</tr>
<tr>
<td>20.6</td>
<td>Packing perfect matchings</td>
<td>326</td>
</tr>
<tr>
<td>20.6a</td>
<td>Polyhedral interpretation</td>
<td>327</td>
</tr>
<tr>
<td>20.6b</td>
<td>Extensions</td>
<td>328</td>
</tr>
<tr>
<td>20.7</td>
<td>Covering by perfect matchings</td>
<td>329</td>
</tr>
<tr>
<td>20.7a</td>
<td>Polyhedral interpretation</td>
<td>330</td>
</tr>
<tr>
<td>20.8</td>
<td>The perfect matching lattice of a bipartite graph</td>
<td>331</td>
</tr>
<tr>
<td>20.9</td>
<td>Further results and notes</td>
<td>333</td>
</tr>
<tr>
<td>20.9a</td>
<td>Some further edge-colouring algorithms</td>
<td>333</td>
</tr>
<tr>
<td>20.9b</td>
<td>Complexity survey for bipartite edge-colouring</td>
<td>334</td>
</tr>
<tr>
<td>20.9c</td>
<td>List-edge-colouring</td>
<td>335</td>
</tr>
<tr>
<td>20.9d</td>
<td>Further notes</td>
<td>336</td>
</tr>
<tr>
<td>21</td>
<td>Bipartite b-matchings and transportation</td>
<td>337</td>
</tr>
<tr>
<td>21.1</td>
<td>b-matchings and w-vertex covers</td>
<td>337</td>
</tr>
<tr>
<td>21.2</td>
<td>The b-matching polytope and the w-vertex cover polyhedron</td>
<td>338</td>
</tr>
<tr>
<td>21.3</td>
<td>Simple b-matchings and b-factors</td>
<td>339</td>
</tr>
<tr>
<td>21.4</td>
<td>Capacitated b-matchings</td>
<td>341</td>
</tr>
</tbody>
</table>
Table of Contents

21.5 Bipartite b-matching and w-vertex cover algorithmically ... 342
21.6 Transportation .. 343
 21.6a Reduction of transshipment to transportation 345
 21.6b The transportation polytope 346
21.7 b-edge covers and w-stable sets 347
21.8 The b-edge cover and the w-stable set polyhedron 348
21.9 Simple b-edge covers .. 349
21.10 Capacitated b-edge covers 350
21.11 Relations between b-matchings and b-edge covers 351
21.12 Upper and lower bounds ... 353
21.13 Further results and notes ... 355
 21.13a Complexity survey on weighted bipartite b-matching and transportation 355
 21.13b The matchable set polytope 359
 21.13c Existence of matrices 359
 21.13d Further notes .. 361
 21.13e Historical notes on the transportation and transshipment problems 362

22 Transversals .. 378
 22.1 Transversals .. 378
 22.1a Alternative proofs of Hall's marriage theorem 379
 22.2 Partial transversals .. 380
 22.3 Weighted transversals ... 382
 22.4 Min-max relations for weighted transversals 382
 22.5 The transversal polytope 383
 22.6 Packing and covering of transversals 385
 22.7 Further results and notes 387
 22.7a The capacitated case .. 387
 22.7b A theorem of Rado ... 389
 22.7c Further notes .. 389
 22.7d Historical notes on transversals 390

23 Common transversals .. 393
 23.1 Common transversals .. 393
 23.2 Weighted common transversals 395
 23.3 Weighted common partial transversals 397
 23.4 The common partial transversal polytope 399
 23.5 The common transversal polytope 401
 23.6 Packing and covering of common transversals 402
 23.7 Further results and notes 407
 23.7a Capacitated common transversals 407
 23.7b Exchange properties .. 407
 23.7c Common transversals of three families 408
 23.7d Further notes .. 409
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part III: Nonbipartite Matching and Covering</td>
<td>411</td>
</tr>
<tr>
<td>24 Cardinality nonbipartite matching</td>
<td></td>
</tr>
<tr>
<td>24.1 Tutte's 1-factor theorem and the Tutte-Berge formula</td>
<td>413</td>
</tr>
<tr>
<td>24.1a Tutte's proof of his 1-factor theorem</td>
<td>415</td>
</tr>
<tr>
<td>24.1b Petersen's theorem</td>
<td>415</td>
</tr>
<tr>
<td>24.2 Cardinality matching algorithm</td>
<td>415</td>
</tr>
<tr>
<td>24.2a An $O(n^3)$ algorithm</td>
<td>418</td>
</tr>
<tr>
<td>24.3 Matchings covering given vertices</td>
<td>421</td>
</tr>
<tr>
<td>24.4 Further results and notes</td>
<td>422</td>
</tr>
<tr>
<td>24.4a Complexity survey for cardinality nonbipartite matching</td>
<td>422</td>
</tr>
<tr>
<td>24.4b The Edmonds-Gallai decomposition of a graph</td>
<td>423</td>
</tr>
<tr>
<td>24.4c Strengthening of Tutte's 1-factor theorem</td>
<td>425</td>
</tr>
<tr>
<td>24.4d Ear-decomposition of factor-critical graphs</td>
<td>425</td>
</tr>
<tr>
<td>24.4e Ear-decomposition of matching-covered graphs</td>
<td>426</td>
</tr>
<tr>
<td>24.4f Barriers in matching-covered graphs</td>
<td>427</td>
</tr>
<tr>
<td>24.4g Two-processor scheduling</td>
<td>428</td>
</tr>
<tr>
<td>24.4h The Tutte matrix and an algebraic matching algorithm</td>
<td>429</td>
</tr>
<tr>
<td>24.4i Further notes</td>
<td>430</td>
</tr>
<tr>
<td>24.4j Historical notes on nonbipartite matching</td>
<td>431</td>
</tr>
<tr>
<td>25 The matching polytope</td>
<td></td>
</tr>
<tr>
<td>25.1 The perfect matching polytope</td>
<td>438</td>
</tr>
<tr>
<td>25.2 The matching polytope</td>
<td>439</td>
</tr>
<tr>
<td>25.3 Total dual integrality; the Cunningham-Marsh formula</td>
<td>440</td>
</tr>
<tr>
<td>25.3a Direct proof of the Cunningham-Marsh formula</td>
<td>442</td>
</tr>
<tr>
<td>25.4 On the total dual integrality of the perfect matching constraints</td>
<td></td>
</tr>
<tr>
<td>25.5 Further results and notes</td>
<td>444</td>
</tr>
<tr>
<td>25.5a Adjacency and diameter of the matching polytope</td>
<td>444</td>
</tr>
<tr>
<td>25.5b Facets of the matching polytope</td>
<td>446</td>
</tr>
<tr>
<td>25.5c Polynomial-time solvability with the ellipsoid method</td>
<td>448</td>
</tr>
<tr>
<td>25.5d The matchable set polytope</td>
<td>450</td>
</tr>
<tr>
<td>25.5e Further notes</td>
<td>452</td>
</tr>
<tr>
<td>26 Weighted nonbipartite matching algorithmically</td>
<td></td>
</tr>
<tr>
<td>26.1 Introduction and preliminaries</td>
<td>453</td>
</tr>
<tr>
<td>26.2 Weighted matching algorithm</td>
<td>454</td>
</tr>
<tr>
<td>26.2a An $O(n^3)$ algorithm</td>
<td>456</td>
</tr>
<tr>
<td>26.3 Further results and notes</td>
<td>458</td>
</tr>
</tbody>
</table>
XVIII Table of Contents

26.3a Complexity survey for weighted nonbipartite matching 458
26.3b Derivation of the matching polytope characterization from the algorithm 459
26.3c Further notes .. 459

27 Nonbipartite edge cover 461
27.1 Minimum-size edge cover 461
27.2 The edge cover polytope and total dual integrality 462
27.3 Further notes on edge covers 464
27.3a Further notes .. 464
27.3b Historical notes on edge covers 464

28 Edge-colouring ... 465
28.1 Vizing's theorem for simple graphs 465
28.2 Vizing's theorem for general graphs 467
28.3 NP-completeness of edge-colouring .. 468
28.4 Nowhere-zero flows and edge-colouring .. 470
28.5 Fractional edge-colouring .. 474
28.6 Conjectures .. 475
28.7 Edge-colouring polyhedrally .. 477
28.8 Packing edge covers .. 478
28.9 Further results and notes .. 480
28.9a Shannon's theorem .. 480
28.9b Further notes .. 480
28.9c Historical notes on edge-colouring .. 482

29 T-joins, undirected shortest paths, and the Chinese postman 485
29.1 T-joins .. 485
29.2 The shortest path problem for undirected graphs .. 487
29.3 The Chinese postman problem .. 487
29.4 T-joins and T-cuts .. 488
29.5 The up hull of the T-join polytope .. 490
29.6 The T-join polytope .. 491
29.7 Sums of circuits .. 493
29.8 Integer sums of circuits .. 494
29.9 The T-cut polytope .. 498
29.10 Finding a minimum-capacity T-cut .. 499
29.11 Further results and notes .. 500
29.11a Minimum-mean length circuit .. 500
29.11b Packing T-cuts .. 501
29.11c Packing T-joins .. 507
29.11d Maximum joins .. 510
29.11e Odd paths .. 515
29.1lf Further notes ... 517
29.1lg On the history of the Chinese postman problem 519

30 2-matchings, 2-covers, and 2-factors 520
30.1 2-matchings and 2-vertex covers 520
30.2 Fractional matchings and vertex covers 521
30.3 The fractional matching polytope 522
30.4 The 2-matching polytope 522
30.5 The weighted 2-matching problem 523
 30.5a Maximum-size 2-matchings and maximum-size matchings 524
30.6 Simple 2-matchings and 2-factors 526
30.7 The simple 2-matching polytope and the 2-factor polytope ... 528
30.8 Total dual integrality ... 531
30.9 2-edge covers and 2-stable sets 531
30.10 Fractional edge covers and stable sets 532
30.11 The fractional edge cover polyhedron 533
30.12 The 2-edge cover polyhedron 533
30.13 Total dual integrality of the 2-edge cover constraints 534
30.14 Simple 2-edge covers .. 535
30.15 Graphs with \(\nu(G) = \tau(G) \) and \(\alpha(G) = \rho(G) \) 536
30.16 Excluding triangles .. 539
 30.16a Excluding higher polygons 544
30.16b Packing edges and factor-critical subgraphs 544
 30.16c 2-factors without short circuits 545

31 \(b \)-matchings ... 546
31.1 \(b \)-matchings ... 546
31.2 The \(b \)-matching polytope 547
31.3 Total dual integrality ... 550
31.4 The weighted \(b \)-matching problem 554
31.5 If \(b \) is even ... 556
31.6 If \(b \) is constant ... 558
31.7 Further results and notes 559
 31.7a Complexity survey for the \(b \)-matching problem 559
 31.7b Facets and minimal systems for the \(b \)-matching polytope ... 559
 31.7c Regularizable graphs 560
 31.7d Further notes ... 561

32 Capacitated \(b \)-matchings 562
32.1 Capacitated \(b \)-matchings 562
32.2 The capacitated \(b \)-matching polytope 564
32.3 Total dual integrality ... 566
32.4 The weighted capacitated \(b \)-matching problem 567
33 Simple b-matchings and b-factors .. 569
33.1 Simple b-matchings and b-factors .. 569
33.2 The simple b-matching polytope and the b-factor polytope . 570
33.3 Total dual integrality ... 570
33.4 The weighted simple b-matching and b-factor problem 571
33.5 If b is constant ... 572
33.6 Further results and notes .. 573
 33.6a Complexity results .. 573
 33.6b Degree-sequences ... 573
 33.6c Further notes ... 574

34 b-edge covers ... 575
34.1 b-edge covers ... 575
34.2 The b-edge cover polyhedron ... 576
34.3 Total dual integrality .. 576
34.4 The weighted b-edge cover problem 577
34.5 If b is even ... 578
34.6 If b is constant ... 578
34.7 Capacitated b-edge covers .. 579
34.8 Simple b-edge covers .. 581
 34.8a Simple b-edge covers and b-matchings 582
 34.8b Capacitated b-edge covers and b-matchings 583

35 Upper and lower bounds ... 584
35.1 Upper and lower bounds .. 584
35.2 Convex hull ... 586
35.3 Total dual integrality .. 589
35.4 Further results and notes ... 591
 35.4a Further results on subgraphs with prescribed degrees 591
 35.4b Odd walks ... 593

36 Bidirected graphs .. 594
36.1 Bidirected graphs .. 594
36.2 Convex hull ... 597
36.3 Total dual integrality .. 598
36.4 Including parity conditions ... 600
36.5 Convex hull ... 604
 36.5a Convex hull of vertex-disjoint circuits 605
36.6 Total dual integrality .. 605
36.7 Further results and notes ... 607
 36.7a The Chvátal rank .. 607
 36.7b Further notes .. 608
Table of Contents

37 The dimension of the perfect matching polytope 609
 37.1 The dimension of the perfect matching polytope 609
 37.2 The perfect matching space 611
 37.3 The brick decomposition 612
 37.4 The brick decomposition of a bipartite graph 613
 37.5 Braces .. 614
 37.6 Bricks .. 614
 37.7 Matching-covered graphs without nontrivial tight cuts ... 617

38 The perfect matching lattice 619
 38.1 The perfect matching lattice 619
 38.2 The perfect matching lattice of the Petersen graph 620
 38.3 A further fact on the Petersen graph 621
 38.4 Various useful observations 622
 38.5 Simple barriers 624
 38.6 The perfect matching lattice of a brick 630
 38.7 Synthesis and further consequences of the previous results 643
 38.8 What further might (not) be true 644
 38.9 Further results and notes 646
 38.9a The perfect 2-matching space and lattice 646
 38.9b Further notes 647
Volume B

Part IV: Matroids and Submodular Functions

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>39 Matroids</td>
<td>651</td>
</tr>
<tr>
<td>39.1 Matroids</td>
<td>651</td>
</tr>
<tr>
<td>39.2 The dual matroid</td>
<td>652</td>
</tr>
<tr>
<td>39.3 Deletion, contraction, and truncation</td>
<td>653</td>
</tr>
<tr>
<td>39.4 Examples of matroids</td>
<td>654</td>
</tr>
<tr>
<td>39.4a Relations between transversal matroids and gammoids</td>
<td>659</td>
</tr>
<tr>
<td>39.5 Characterizing matroids by bases</td>
<td>662</td>
</tr>
<tr>
<td>39.6 Characterizing matroids by circuits</td>
<td>662</td>
</tr>
<tr>
<td>39.6a A characterization of Lehman</td>
<td>663</td>
</tr>
<tr>
<td>39.7 Characterizing matroids by rank functions</td>
<td>664</td>
</tr>
<tr>
<td>39.8 The span function and flats</td>
<td>666</td>
</tr>
<tr>
<td>39.8a Characterizing matroids by span functions</td>
<td>666</td>
</tr>
<tr>
<td>39.8b Characterizing matroids by flats</td>
<td>667</td>
</tr>
<tr>
<td>39.8c Characterizing matroids in terms of lattices</td>
<td>668</td>
</tr>
<tr>
<td>39.9 Further exchange properties</td>
<td>669</td>
</tr>
<tr>
<td>39.9a Further properties of bases</td>
<td>671</td>
</tr>
<tr>
<td>39.10 Further results and notes</td>
<td>671</td>
</tr>
<tr>
<td>39.10a Further notes</td>
<td>671</td>
</tr>
<tr>
<td>39.10b Historical notes on matroids</td>
<td>672</td>
</tr>
<tr>
<td>40 The greedy algorithm and the independent set polytope</td>
<td>688</td>
</tr>
<tr>
<td>40.1 The greedy algorithm</td>
<td>688</td>
</tr>
<tr>
<td>40.2 The independent set polytope</td>
<td>690</td>
</tr>
<tr>
<td>40.3 The most violated inequality</td>
<td>693</td>
</tr>
<tr>
<td>40.3a Facets and adjacency on the independent set polytope</td>
<td>698</td>
</tr>
<tr>
<td>40.3b Further notes</td>
<td>699</td>
</tr>
<tr>
<td>41 Matroid intersection</td>
<td>700</td>
</tr>
<tr>
<td>41.1 Matroid intersection theorem</td>
<td>700</td>
</tr>
<tr>
<td>41.1a Applications of the matroid intersection theorem</td>
<td>702</td>
</tr>
<tr>
<td>41.1b Woodall's proof of the matroid intersection theorem</td>
<td>704</td>
</tr>
<tr>
<td>41.2 Cardinality matroid intersection algorithm</td>
<td>705</td>
</tr>
<tr>
<td>41.3 Weighted matroid intersection algorithm</td>
<td>707</td>
</tr>
<tr>
<td>41.3a Speeding up the weighted matroid intersection algorithm</td>
<td>710</td>
</tr>
<tr>
<td>41.4 Intersection of the independent set polytopes</td>
<td>712</td>
</tr>
<tr>
<td>41.4a Facets of the common independent set polytope</td>
<td>717</td>
</tr>
<tr>
<td>41.4b Up and down hull of the common base polytope</td>
<td>719</td>
</tr>
</tbody>
</table>
41.5 Further results and notes .. 720
41.5a Menger’s theorem for matroids 720
41.5b Exchange properties ... 721
41.5c Jump systems ... 722
41.5d Further notes ... 723

42 Matroid union ... 725
42.1 Matroid union theorem ... 725
 42.1a Applications of the matroid union theorem 727
 42.1b Horn’s proof .. 729
42.2 Polyhedral applications 730
42.3 Matroid union algorithm 731
42.4 The capacitated case: fractional packing and covering of
dbases ... 732
42.5 The capacitated case: integer packing and covering of bases 734
42.6 Further results and notes 736
 42.6a Induction of matroids 736
 42.6b List-colouring ... 737
 42.6c Strongly base orderable matroids 738
 42.6d Blocking and antithetical polyhedra 741
 42.6e Further notes .. 743
 42.6f Historical notes on matroid union 743

43 Matroid matching .. 745
43.1 Infinite matroids ... 745
43.2 Matroid matchings ... 746
43.3 Circuits ... 747
43.4 A special class of matroids 747
43.5 A min-max formula for maximum-size matroid matching .. 751
43.6 Applications of the matroid matching theorem 753
43.7 A Gallai theorem for matroid matching and covering 756
43.8 Linear matroid matching algorithm 757
43.9 Matroid matching is not polynomial-time solvable in
genral ... 762
43.10 Further results and notes 763
 43.10a Optimal path-matching 763
 43.10b Further notes .. 764

44 Submodular functions and polymatroids 766
44.1 Submodular functions and polymatroids 766
 44.1a Examples .. 768
44.2 Optimization over polymatroids by the greedy method .. 771
44.3 Total dual integrality 773
44.4 f is determined by EP_f 773
44.5 Supermodular functions and contrapollmatroids 774
XXIV Table of Contents

44.6 Further results and notes .. 775
44.6a Submodular functions and matroids 775
44.6b Reducing integer polymatroids to matroids 776
44.6c The structure of polymatroids 776
44.6d Characterization of polymatroids 779
44.6e Operations on submodular functions and polymatroids .. 781
44.6f Duals of polymatroids .. 782
44.6g Induction of polymatroids 782
44.6h Lovász’s generalization of König’s matching theorem ... 783
44.6i Further notes .. 784

45 Submodular function minimization 786
45.1 Submodular function minimization 786
45.2 Orders and base vectors .. 787
45.3 A subroutine ... 787
45.4 Minimizing a submodular function 789
45.5 Running time of the algorithm 790
45.6 Minimizing a symmetric submodular function 792
45.7 Minimizing a submodular function over the odd sets 793

46 Polymatroid intersection .. 795
46.1 Box-total dual integrality of polymatroid intersection 795
46.2 Consequences ... 796
46.3 Contrapolymatroid intersection 797
46.4 Intersecting a polymatroid and a contrapolymatroid 798
46.5 Frank’s discrete sandwich theorem 799
46.6 Integer decomposition .. 800
46.7 Further results and notes 801
46.7a Up and down hull of the common base vectors 801
46.7b Further notes .. 804

47 Polymatroid intersection algorithmically 805
47.1 A maximum-size common vector in two polymatroids 805
47.2 Maximizing a coordinate of a common base vector 807
47.3 Weighted polymatroid intersection in polynomial time 809
47.4 Weighted polymatroid intersection in strongly polynomial time .. 811
47.5 Contrapolymatroids ... 818
47.6 Intersecting a polymatroid and a contrapolymatroid 818
47.6a Further notes .. 819
48 Dilworth truncation ... 820
 48.1 If \(f(0) < 0 \) .. 820
 48.2 Dilworth truncation 821
 48.2a Applications and interpretations 823
 48.3 Intersection .. 825

49 Submodularity more generally 826
 49.1 Submodular functions on a lattice family 826
 49.2 Intersection .. 828
 49.3 Complexity ... 829
 49.4 Submodular functions on an intersecting family 832
 49.5 Intersection .. 833
 49.6 From an intersecting family to a lattice family 834
 49.7 Complexity .. 835
 49.8 Intersecting a polymatroid and a contrapolymatroid 837
 49.9 Submodular functions on a crossing family 838
 49.10 Complexity .. 840
 49.10a Nonemptiness of the base polyhedron 841
 49.11 Further results and notes 842
 49.11a Minimizing a submodular function over a
 subcollection of a lattice family 842
 49.11b Generalized polymatroids 845
 49.11c Supermodular colourings 849
 49.11d Further notes 851

Part V: Trees, Branchings, and Connectors 853

50 Shortest spanning trees 855
 50.1 Shortest spanning trees 855
 50.2 Implementing Prim’s method 857
 50.3 Implementing Kruskal’s method 858
 50.3a Parallel forest-merging 859
 50.3b A dual greedy algorithm 859
 50.4 The longest forest and the forest polytope 860
 50.5 The shortest connector and the connector polytope ... 862
 50.6 Further results and notes 864
 50.6a Complexity survey for shortest spanning tree 864
 50.6b Characterization of shortest spanning trees 865
 50.6c The maximum reliability problem 866
 50.6d Exchange properties of forests 867
 50.6e Uniqueness of shortest spanning tree 868
 50.6f Forest covers 869
 50.6g Further notes 870
 50.6h Historical notes on shortest spanning trees 871
51 Packing and covering of trees ... 877
 51.1 Unions of forests ... 877
 51.2 Disjoint spanning trees 877
 51.3 Covering by forests .. 878
 51.4 Complexity .. 879
 51.5 Further results and notes 889
 51.5a Complexity survey for tree packing and covering 889
 51.5b Further notes .. 892

52 Longest branchings and shortest arborescences 893
 52.1 Finding a shortest r-arborescence 893
 52.1a r-arborescences as common bases of two matroids 895
 52.2 Related problems ... 895
 52.3 A min-max relation for shortest r-arborescences 896
 52.4 The r-arborescence polytope 897
 52.4a Uncrossing cuts .. 899
 52.5 A min-max relation for longest branchings 900
 52.6 The branching polytope 901
 52.7 The arborescence polytope 901
 52.8 Further results and notes 902
 52.8a Complexity survey for shortest r-arborescence 902
 52.8b Concise LP formulation for shortest r-arborescence .. 902
 52.8c Further notes ... 903

53 Packing and covering of branchings and arborescences 904
 53.1 Disjoint branchings ... 904
 53.2 Disjoint r-arborescences 905
 53.3 The capacitated case .. 907
 53.4 Disjoint arborescences 908
 53.5 Covering by branchings 908
 53.6 An exchange property of branchings 909
 53.7 Covering by r-arborescences 911
 53.8 Minimum-length unions of k r-arborescences 913
 53.9 The complexity of finding disjoint arborescences 918
 53.10 Further results and notes 921
 53.10a Complexity survey for disjoint arborescences 921
 53.10b Arborescences with roots in given subsets 923
 53.10c Disclaimers ... 925
 53.10d Further notes ... 926

54 Biconnectors and biflareings 928
 54.1 Shortest $R - S$ biconnectors 928
 54.2 Longest $R - S$ biflareings 930
 54.3 Disjoint $R - S$ biconnectors 931
 54.4 Covering by $R - S$ biflareings 934
Table of Contents

54.5 Minimum-size bibranchings .. 934
54.6 Shortest bibranchings .. 935
 54.6a Longest bifurcations 937
54.7 Disjoint bibranchings .. 940
 54.7a Proof using supermodular colourings 943
 54.7b Covering by bifurcations 943
 54.7c Disjoint $R - S$ biconnectors and $R - S$ bibranchings .. 944
 54.7d Covering by $R - S$ biforests and by $R - S$
 bifurcations .. 944

55 Minimum directed cut covers and packing directed cuts 946
 55.1 Minimum directed cut covers and packing directed cuts 946
 55.2 The Lucchesi-Younger theorem 947
 55.3 Directed cut k-covers 949
 55.4 Feedback arc sets ... 951
 55.5 Complexity .. 953
 55.5a Finding a dual solution 954
 55.6 Further results and notes 956
 55.6a Complexity survey for minimum-size directed cut
 cover .. 956
 55.6b Feedback arc sets in linklessly embeddable digraphs .. 956
 55.6c Feedback vertex sets 958
 55.6d The bipartite case 959
 55.6e Further notes .. 960

56 Minimum directed cuts and packing directed cut covers 962
 56.1 Minimum directed cuts and packing directed cut covers 962
 56.2 Source-sink connected digraphs 964
 56.3 Other cases where Woodall’s conjecture is true 967
 56.3a Further notes .. 968

57 Strong connectors .. 969
 57.1 Making a directed graph strongly connected 969
 57.2 Shortest strong connectors 970
 57.3 Polyhedrally ... 973
 57.4 Disjoint strong connectors 973
 57.5 Complexity .. 975
 57.5a Crossing families .. 976

58 The traveling salesman problem 981
 58.1 The traveling salesman problem 981
 58.2 NP-completeness of the TSP 982
 58.3 Branch-and-bound techniques 982
 58.4 The symmetric traveling salesman polytope 983
 58.5 The subtour elimination constraints 984
Table of Contents

58.6 1-trees and Lagrangean relaxation 985
58.7 The 2-factor constraints ... 986
58.8 The clique tree inequalities 987
58.8a Christofides’ heuristic for the TSP 989
58.8b Further notes on the symmetric traveling salesman problem ... 990
58.9 The asymmetric traveling salesman problem 992
58.10 Directed 1-trees ... 993
58.10a An integer programming formulation 993
58.10b Further notes on the asymmetric traveling salesman problem ... 994
58.11 Further notes on the traveling salesman problem 995
58.11a Further notes ... 995
58.11b Historical notes on the traveling salesman problem 996

59 Matching forests .. 1005
59.1 Introduction ... 1005
59.2 The maximum size of a matching forest 1006
59.3 Perfect matching forests ... 1007
59.4 An exchange property of matching forests 1008
59.5 The matching forest polytope 1011
59.6 Further results and notes ... 1015
59.6a Matching forests in partitionable mixed graphs 1015
59.6b Further notes ... 1017

60 Submodular functions on directed graphs 1018
60.1 The Edmonds-Giles theorem 1018
60.1a Applications .. 1020
60.1b Generalized polymatroids and the Edmonds-Giles theorem ... 1020
60.2 A variant ... 1021
60.2a Applications .. 1023
60.3 Further results and notes ... 1025
60.3a Lattice polyhedra .. 1025
60.3b Polymatroidal network flows 1028
60.3c A general model .. 1029
60.3d Packing cuts and Győri’s theorem 1030
60.3e Further notes ... 1034

61 Graph orientation .. 1035
61.1 Orientations with bounds on in- and outdegrees 1035
61.2 2-edge-connectivity and strongly connected orientations ... 1037
61.2a Strongly connected orientations with bounds on degrees ... 1038
61.3 Nash-Williams’ orientation theorem 1040
Table of Contents

64.9a Graphs with polynomial-time stable set algorithm . 1099
64.9b Colourings and orientations . 1101
64.9c Algebraic methods . 1102
64.9d Approximation algorithms . 1103
64.9e Further notes . 1104

65 Perfect graphs: general theory . 1106
65.1 Introduction to perfect graphs . 1106
65.2 The perfect graph theorem . 1108
65.3 Replication . 1109
65.4 Perfect graphs and polyhedra . 1110
65.4a Lovász's proof of the replication lemma . 1111
65.5 Decomposition of Berge graphs . 1112
65.5a 0- and 1-joins . 1112
65.5b The 2-join . 1113
65.6 Pre-proof work on the strong perfect graph conjecture . 1115
65.6a Partitionable graphs . 1116
65.6b More characterizations of perfect graphs . 1118
65.6c The stable set polytope of minimally imperfect graphs . 1118
65.6d Graph classes . 1120
65.6e The \(P_3 \)-structure of a graph and a semi-strong perfect graph theorem . 1122
65.6f Further notes on the strong perfect graph conjecture . 1123
65.7 Further results and notes . 1125
65.7a Perz and Rolewicz's proof of the perfect graph theorem . 1125
65.7b Kernel solvability . 1126
65.7c The amalgam . 1130
65.7d Diperfect graphs . 1131
65.7e Further notes . 1133

66 Classes of perfect graphs . 1135
66.1 Bipartite graphs and their line graphs . 1135
66.2 Comparability graphs . 1137
66.3 Chordal graphs . 1138
66.3a Chordal graphs as intersection graphs of subtrees of a tree . 1142
66.4 Meyniel graphs . 1143
66.5 Further results and notes . 1145
66.5a Strongly perfect graphs . 1145
66.5b Perfectly orderable graphs . 1146
66.5c Unimodular graphs . 1147
66.5d Further classes of perfect graphs . 1148
67 Perfect graphs: polynomial-time solvability .. 1152
 67.1 Optimum clique and colouring in perfect graphs algorithmically 1152
 67.2 Weighted clique and colouring algorithmically 1155
 67.3 Strong polynomial-time solvability .. 1159
 67.4 Further results and notes ... 1159
 67.4a Further on \(\theta(G) \) ... 1159
 67.4b The Shannon capacity \(\Theta(G) \) .. 1167
 67.4c Clique cover numbers of products of graphs 1172
 67.4d A sharper upper bound \(\theta'(G) \) on \(\alpha(G) \) 1173
 67.4e An operator strengthening convex bodies .. 1173
 67.4f Further notes ... 1175
 67.4g Historical notes on perfect graphs .. 1176

68 T-perfect graphs .. 1186
 68.1 T-perfect graphs .. 1186
 68.2 Strongly t-perfect graphs ... 1187
 68.3 Strong t-perfection of odd-\(K_4 \)-free graphs 1188
 68.4 On characterizing t-perfection ... 1194
 68.5 A combinatorial min-max relation ... 1196
 68.6 Further results and notes ... 1200
 68.6a The \(w \)-stable set polyhedron .. 1200
 68.6b Bidirected graphs ... 1201
 68.6c Characterizing odd-\(K_4 \)-free graphs by mixing stable sets and vertex covers ... 1203
 68.6d Orientations of discrepancy 1 ... 1204
 68.6e Colourings and odd \(K_4 \)-subdivisions ... 1206
 68.6f Homomorphisms ... 1207
 68.6g Further notes ... 1207

69 Claw-free graphs .. 1208
 69.1 Introduction ... 1208
 69.2 Maximum-size stable set in a claw-free graph 1208
 69.3 Maximum-weight stable set in a claw-free graph 1213
 69.4 Further results and notes ... 1216
 69.4a On the stable set polytope of a claw-free graph 1216
 69.4b Further notes ... 1217
Volume C

Part VII: Multiflows and Disjoint Paths

70 Multiflows and disjoint paths 1221
 70.1 Directed multflow problems 1221
 70.2 Undirected multflow problems 1222
 70.3 Disjoint paths problems 1223
 70.4 Reductions ... 1223
 70.5 Complexity of the disjoint paths problem 1224
 70.6 Complexity of the fractional multflow problem 1225
 70.7 The cut condition for directed graphs 1227
 70.8 The cut condition for undirected graphs 1228
 70.9 Relations between fractional, half-integer, and integer solutions .. 1230
 70.10 The Euler condition 1233
 70.11 Survey of cases where a good characterization has been found .. 1234
 70.12 Relation between the cut condition and fractional cut packing .. 1236
 70.12a Sufficiency of the cut condition sometimes implies an integer multflow 1238
 70.12b The cut condition and integer multiflows in directed graphs 1241
 70.13 Further results and notes 1242
 70.13a Fixing the number of commodities in undirected graphs .. 1242
 70.13b Fixing the number of commodities in directed graphs .. 1243
 70.13c Disjoint paths in acyclic digraphs 1244
 70.13d A column generation technique for multiflows ... 1245
 70.13e Approximate max-flow min-cut theorems for multiflows .. 1247
 70.13f Further notes 1248
 70.13g Historical notes on multicommodity flows 1249

71 Two commodities .. 1251
 71.1 The Rothvlcht-Whinston theorem and Hu's 2-commodity flow theorem 1251
 71.1a Nash-Williams' proof of the Rothvlcht-Whinston theorem .. 1254
 71.2 Consequences .. 1255
 71.3 2-commodity cut packing 1257
 71.4 Further results and notes 1261
Table of Contents

71.4a Two disjoint paths in undirected graphs 1261
71.4b A directed 2-commodity flow theorem 1262
71.4c Kleitman, Martin-Löf, Rothschild, and Whinston's theorem 1263
71.4d Further notes 1265

72 Three or more commodities 1266
72.1 Demand graphs for which the cut condition is sufficient 1266
72.2 Three commodities 1271
72.2a The $K_{3,3}$-metric condition 1273
72.2b Six terminals 1275
72.3 Cut packing 1276

73 T-paths 1279
73.1 Disjoint T-paths 1279
73.1a Disjoint T-paths with the matroid matching algorithm 1283
73.1b Polynomial-time findability of edge-disjoint T-paths 1285
73.1c A feasibility characterization for integer K_3-flows 1286
73.2 Fractional packing of T-paths 1287
73.2a Direct proof of Corollary 73.2d 1288
73.3 Further results and notes 1289
73.3a Further notes on Mader's theorem 1289
73.3b A generalization of fractionally packing T-paths 1290
73.3c Lockable collections 1291
73.3d Mader matroids 1292
73.3e Minimum-cost maximum-value multiflows 1294
73.3f Further notes 1295

74 Planar graphs 1296
74.1 All nets spanned by one face: the Okamura-Seymour theorem 1296
74.1a Complexity survey 1299
74.1b Graphs on the projective plane 1299
74.1c If only inner vertices satisfy the Euler condition 1302
74.1d Distances and cut packing 1304
74.1e Linear algebra and distance realizability 1305
74.1f Directed planar graphs with all terminals on the outer boundary 1307
74.2 $G + H$ planar 1307
74.2a Distances and cut packing 1308
74.2b Deleting the Euler condition if $G + H$ is planar 1309
74.3 Okamura's theorem 1311
74.3a Distances and cut packing 1313
XXXIV Table of Contents

74.3b The Klein bottle .. 1314
74.3c Commodities spanned by three or more faces 1316
74.4 Further results and notes 1318
74.4a Another theorem of Okamura 1318
74.4b Some other planar cases where the cut condition is sufficient 1320
74.4c Vertex-disjoint paths in planar graphs 1320
74.4d Grid graphs ... 1323
74.4e Further notes ... 1325

75 Cuts, odd circuits, and multilows 1326
75.1 Weakly and strongly bipartite graphs 1326
75.1a NP-completeness of maximum cut 1328
75.1b Planar graphs ... 1328
75.2 Signed graphs .. 1329
75.3 Weakly, evenly, and strongly bipartite signed graphs 1330
75.4 Characterizing strongly bipartite signed graphs ... 1331
75.5 Characterizing weakly and evenly bipartite signed graphs 1334
75.6 Applications to multilows 1341
75.7 The cut cone and the cut polytope 1342
75.8 The maximum cut problem and semidefinite programming 1345
75.9 Further results and notes 1348
 75.9a Cuts and stable sets 1348
 75.9b Further notes 1350

76 Homotopy and graphs on surfaces 1352
76.1 Graphs, curves, and their intersections: terminology and notation 1352
76.2 Making curves minimally crossing by Reidemeister moves 1353
76.3 Decomposing the edges of an Eulerian graph on a surface 1354
76.4 A corollary on lengths of closed curves 1356
76.5 A homotopic circulation theorem 1357
76.6 Homotopic paths in planar graphs with holes 1361
76.7 Vertex-disjoint paths and circuits of prescribed homotopies 1367
 76.7a Vertex-disjoint circuits of prescribed homotopies 1367
 76.7b Vertex-disjoint homotopic paths in planar graphs with holes 1368
 76.7c Disjoint trees 1371
Table of Contents

Part VIII: Hypergraphs

77 Packing and blocking in hypergraphs: elementary notions
- 77.1 Elementary hypergraph terminology and notation
- 77.2 Deletion, restriction, and contraction
- 77.3 Duplication and parallelization
- 77.4 Clutters
- 77.5 Packing and blocking
- 77.6 The blocker
- 77.7 Fractional matchings and vertex covers
- 77.8 k-matchings and k-vertex covers
- 77.9 Further results and notes
 - 77.9a Bottleneck extrema
 - 77.9b The ratio of and \(r^* \)
 - 77.9c Further notes

78 Ideal hypergraphs
- 78.1 Ideal hypergraphs
- 78.2 Characterizations of ideal hypergraphs
- 78.3 Minimally nonideal hypergraphs
- 78.4 Properties of minimally nonideal hypergraphs: Lehman's theorem
 - 78.4a Application of Lehman's theorem: Guenin's theorem
 - 78.4b Ideality is in co-NP
- 78.5 Further results and notes
 - 78.5a Composition of clutters
 - 78.5b Further notes

79 Mengerian hypergraphs
- 79.1 Mengerian hypergraphs
- 79.2 Minimally non-Mengerian hypergraphs
- 79.3 Further results and notes
 - 79.3a Packing hypergraphs
 - 79.3b Restrictions instead of parallelizations
 - 79.3c Equivalences for k-matchings and k-vertex covers
 - 79.3d A general technique
 - 79.3e Further notes
XXXVI Table of Contents

80 Binary hypergraphs ... 1406
 80.1 Binary hypergraphs ... 1406
 80.2 Binary hypergraphs and binary matroids 1406
 80.3 The blocker of a binary hypergraph 1407
 80.3a Further characterizations of binary clutters 1408
 80.4 On characterizing binary ideal hypergraphs 1408
 80.5 Seymour's characterization of binary Mengerian
 hypergraphs ... 1409
 80.5a Applications of Seymour's theorem 1413
 80.6 Mengerian matroids .. 1415
 80.6a Oriented matroids ... 1415
 80.7 Further results and notes 1416
 80.7a $\tau_2(H) = 2\tau(H)$ for binary hypergraphs H 1416
 80.7b Application T-joins and T-cuts 1417
 80.7c Box-integrality of $k \cdot P_H$ 1418

81 Matroids and multiflows .. 1419
 81.1 Multiflows in matroids 1419
 81.2 Integer k-flowing .. 1420
 81.3 1-flowing and 1-cycling 1421
 81.4 2-flowing and 2-cycling 1421
 81.5 3-flowing and 3-cycling 1422
 81.6 4-flowing, 4-cycling, ∞-flowing, and ∞-cycling.. 1423
 81.7 The circuit cone and cycle polytope of a matroid 1424
 81.8 The circuit space and circuit lattice of a matroid 1425
 81.9 Nonnegative integer sums of circuits 1425
 81.10 Nowhere-zero flows and circuit double covers in matroids . 1426

82 Covering and antiblocking in hypergraphs 1428
 82.1 Elementary concepts ... 1428
 82.2 Fractional edge covers and stable sets 1429
 82.3 k-edge covers and k-stable sets 1429
 82.4 The antiblocker and conformality 1430
 82.4a Gilmore's characterization of conformality 1431
 82.5 Perfect hypergraphs .. 1431
 82.6 Further notes .. 1434
 82.6a Some equivalences for the k-parameters 1434
 82.6b Further notes .. 1437

83 Balanced and unimodular hypergraphs 1439
 83.1 Balanced hypergraphs 1439
 83.2 Characterizations of balanced hypergraphs 1440
 83.2a Totally balanced matrices 1444
 83.2b Examples of balanced hypergraphs 1447
 83.2c Balanced 0, ±1 matrices 1447
Table of Contents XXXVII

83.3 Unimodular hypergraphs 1448
83.3a Further notes 1450

Survey of Problems, Questions, and Conjectures 1453

References .. 1463

Name Index ... 1767

Subject Index ... 1807

Greek graph and hypergraph functions 1880
Combinatorial Optimization
Polyhedra and Efficiency
Schrijver, A.
2003, CIV, 1879 p. In 3 volumes, not available separately., Hardcover
ISBN: 978-3-540-44389-6