Preface

By involuntary timing this volume will appear almost exactly thirty years after neutron spin echo (NSE) was discovered and the echo effect was experimentally first demonstrated in April 1972 at the Budapest Research Reactor on the forested hills around the city. The idea to organize the present volume arose during a recent workshop1 which followed by twenty years the first workshop devoted to the technique of NSE and research using NSE held at ILL2,3.

The context and content of the two workshops were, of course, very different. In 1979 there was just one operational NSE spectrometer, the IN11 at ILL and the discussion focussed on establishing the fundamental technique and reviewing the first set of successful applications of the method in condensed matter research. Today 13 NSE instruments serve a broad and well-established user community and more machines are being planned. Current examples of research results obtained by NSE spectroscopy well illustrate the broad relevance of the method for the study of a variety of phenomena, including phase transitions, magnetism, superconductivity and in particular soft matter in general, such as polymers, liquids, glassy and biological systems.

A wealth of innovations proposed in the past two decades by quite a number of people have been realized. The zero field (ZF) or resonance NSE (NRSE) variant was introduced some 15 years ago. At about the same time it was also realized and demonstrated that the NSE principle can also be efficiently used by neutron velocity dependent modulation of a parameter of the neutron beam other than polarization, for example intensity. More recent years have seen a particular surge of new ideas for extending both the techniques and the field of applications to new domains such as to use the NSE principle in small angle scattering, reflectometry, and to develop combinations of NSE and neutron optical phenomena such as nuclear refractive index and interference effects.

On the other hand, instrument performance in those “classical” applications in quasi-elastic scattering has also tremendously progressed. Resolutions available today exceed 200 ns (about 3 neV HWHM equivalent) compared to 10 ns 20 years ago. The technique of using high detector solid angles has also been established with the actual capability of taking NSE data simultaneously in an

1 International Workshop on Neutron Spin Echo Spectroscopy. Hahn-Meitner-Institut, Berlin, Germany, October 16.-17. 2000
2 Neutron Spin Echo, Institute Laue-Langevin, Grenoble, France, October 15.-16. 1979
3 Neutron Spin Echo ed. by F. Mezei, Spinger Verlag, Heidelberg, 1980
angular range of about 30° to 80° with more than 200° in principle accessible if one can afford to acquire a vast collection of either supermirror analysers or polarized 3He filter cells.

Since its advent in the early seventies a broad range of applications have been developed covering the study of a variety of phenomena in condensed matter research. The present volume, after a general introduction to the principles of NSE, gives detailed technical descriptions of various approaches and new developments in NSE instrumentation (Part I) and selected examples of NSE studies (Part II).

The carefully selected contributions collected in this volume present to the interested reader and researchers recent developments, current status and future perspectives of NSE research. We believe they will not only introduce newcomers to the field by describing principal techniques and approaches but also highlight by examples the power and usefulness of NSE spectroscopy in various fields of exploration of condensed matter.

The editors are most grateful to the authors of this volume for their cooperation and fascinating contributions and to Springer Verlag for invaluable advice and taking great care of this endeavor.

Berlin, Summer 2002

Ferenc Mezei
Catherine Pappas
Thomas Gutberlet
List of Contributors

Wim G. Bouwman
Interfacultair Reactor Instituut
Delft University of Technology
Mekelweg 15
2629 JB Delft
The Netherlands
bouwman@IRI.TUDelft.NL

Samrath L. Chaplot
Solid State Physics Division
Bhabha Atomic Research Centre
Trombay, Mumbai 400085
India
chaplot@magnum.barc.ernet.in

Juan Colmenero
Unidad de Física de Materiales (CSIC–UPV/EHU)
Apartado 1072
20080 San Sebastián
Spain
wapcolej@sq.ehu.es

Georg Ehlers
Institut Laue Langevin
6 rue Jules Horowitz
38042 Grenoble Cedex 9
France
ehlers@ill.fr

Bernd Ewen
MPI für Polymerforschung
Postfach 3148
55021 Mainz
Germany
bernd.ewen@mpip-mainz.mpg.de

Bela Farago
Institut Laue Langevin
6 rue Jules Horowitz
38042 Grenoble Cedex 9
France
farago@ill.fr

Edward M. Forgan
School of Physics and Astronomy
University of Birmingham
Birmingham, B15 2TT
United Kingdom
e.m.forgan@bham.ac.uk

Alexander I. Frank
Frank Laboratory of Neutron Physics
Joint Institute for Nuclear Research
141980, Dubna
Russia frank@nf.jinr.ru

Roland Gähler
Institut Laue Langevin
6 rue Jules Horowitz
38042 Grenoble
France
name@e-mail.*

Klaus Habicht
Hahn-Meitner-Institut Berlin
Glienicker Str. 100
14109 Berlin
Germany
habicht@hmi.de
Thomas Hellweg
TU Berlin
Iwan-N.-Stranski Institut für
Physikalische und Theoretische
Chemie Straße des 17. Juni 112
10623 Berlin
Germany
Thomas.Hellweg@TU-Berlin.DE

Alexander Ioffe
Forschungszentrum Jülich
Institut für Festkörperforschung
52425 Jülich
Germany
a.ioffe@fz-juelich.de

Thomas Keller
MPI for Solid State Research
Heisenbergstr. 1
70569 Stuttgart
Germany
Thomas.Keller@ph.tum.de

Valentin T. Lebedev
Petersburg Nuclear Physics
Institute
188300 Gatchina, St.-Petersburg dist.
Russia
vlebedev@hep486.pnpi.spb.ru

Françoise Leclercq
LASIR-CNRS
13, rue de Toul
59046 Lille
France
Francoise.Leclercq@hei.fr

Stéphane Longeville
Laboratoire Léon Brillouin
(CEA-CNRS)
CEA Saclay
91191 Gif-sur-Yvette
France
longevil@llb.saclay.cea.fr

Ferenc Mezei
Hahn-Meitner-Institut Berlin
Glienicker Str. 100
14109 Berlin
Germany
mezei@hmi.de

Michael Monkenbusch
Forschungszentrum Jülich
Institut für Festkörperforschung
52425 Jülich
Germany
m.monkenbusch@fz-juelich.de

Catherine Pappas
Hahn-Meitner-Institut Berlin
Glienicker Str. 100
14109 Berlin
Germany
pappas@hmi.de

Helmut Rauch
Atom Institut der Österreichischen
Universitäten
Stadionallee 2
1020 Wien
Austria
rauch@ati.ac.at

M. Theo Rekveldt
Interfacultair Reactor Instituut
Delft University of Technology
Mekelweg 15
2629 JB Delft
The Netherlands
M.T.Rekveldt@IRI.TUDelft.NL

Hideki Seto
Faculty of Integrated Arts and
Sciences
Hiroshima University
Higashi-Hiroshima 739-8521
Japan
seto@minerva.ias.hiroshima-u.ac.jp
Gyula Török
Research Institute for Solid State Physics and Optics
P.O.Box 49
1525 Budapest
Hungary
torok@power.szfki.kfki.hu

Bing-Shiou Yang
Department of Chemical Engineering
Princeton University
Princeton, NJ 08544
U.S.A.
bsyang@alumni.princeton.edu
Neutron Spin Echo Spectroscopy
Basics, Trends and Applications
Mezei, F.; Pappas, C.; Gutberlet, Th. (Eds.)
2003, XV, 350 p., Hardcover
ISBN: 978-3-540-44293-6