TABLE OF CONTENTS

PROLOGUE, page 1
SYNOPSIS, page 5

CHAPTER ONE
BASIC KINEMATICS OF THE GEAR SET

Preliminary remarks, 13
Kinematics and the pitch line, 14
On the dichotomy synthesis-v-analysis, 19
Algebraic formulae for the pitch line, 20
On the numbering and significance of these equations, 23
Various graphs telling about the pitch line, 24
On the question of sign, 27
The axodes, 28
The imaginary spline-line teeth of a pair of axodes, 30
Singly-departed naked wheels of the crossed helicals, 32
The twisted surface marked (d) in figure 1.07, 33
Some aspects to be remembered of figure 1.07, 34
Special cases among the radii occurring at P, D and O, 34
Ordinary planar spur and the parallel helical gears, 36
The various kinds of bevel gears, 37
A first look at the question of offset, 37
Conclusion, 40

CHAPTER TWO
THE FUNDAMENTAL LAW OF GEARING

Introduction, 41
The fundamental law, 41
Involute gears, 43
Prognoses, 44
Some assumptions and two disclaimers, 44
An equivalent linkage, 45
Enumerative geometry, 47
In screw theory the fundamental law manifests itself, 48
Proofs of the law by means of the vector algebra, 50
On what there is to follow, 52
On the non-involute hypoids, 52
Design in the absence of the fundamental law, 53
Sketchy account of the (non-involute) hypoid literature, 54
The manufacture of hypoid gearing, 55
Some eclectic theoretical works, 56
Survey of the general spatial involute literature, 57
Other laws, 58
Some observations in respect of all gears, 58
Robert Willis 1838, 61

CHAPTER THREE
MATING INVOLUTE HELICOIDS

Introduction, 63
Circular hyperboloids proliferate, 64
A straight path for the point of contact, 65
Two ruled surfaces intersecting perpendicularly, 66
Imagined milling of the involute tooth profile, 71
The core helix and the twisted line of intersection, 71
The involute helicoid and its whole slip track, 72
The whole geometric construct, 74
Brief look at a special (the planar) case, 75
The triad of lines mutually perpendicular at B, 75
The angles ζ and σ and the curvature at B, 75
A mating pair of non-alike involute helicoids, 77
The unimportance of errors upon assembly, 80
Two cut gear-bodies put anyhow into contact, 81
On the kinematic equivalences, 84
The G-circles intersecting at Q, 84
Circles intersecting in general, 85
The triad of planes at a general Q, 85
Gyratory motion of the triad at Q, 89
Location here of the pitch line, 89
Another triad of lines in and about the polar plane, 90
More about the variable angle δ_{REMOTE}, 91
Special points $[Qp]$, $[Qm]$ and $[Qc]$ in the path of Q, 91
Practical limits to the otherwise endless motion, 92
Degenerate slip track geometry at the two ends of Z, 93
The slip tracks unsupported, 97
Theodore Olivier 1842, 98
CHAPTER FOUR

KEY ASPECTS OF THE GEOMETRY

Introduction, 107
The hyperboloid and its generators, 108
Theorems about generator-joined hyperboloids, 109
Theorem #1, about circular hyperboloidal axodes, 111
Theorem #2, about the points [T'm], 113
Intersecting circles, 115
Theorem #3 part one, about the points [T't], 115
Theorem #3 part two, about the point [T'd], 117
An isolated note looking in retrospect, 118
An isolated note looking ahead, 118
Definition of [Qf], 119
Looking now at the figures 4.04, 119
Looking next at figure 4.04(d), 122
Specifically in the case of gearing, 123
The central fortuitous fact now apparent, 125
Legitimate paths, 126
On the distribution of [Qm], 127
Kinematics at [Qm], 129
Statics at [Qm], 130
Strain energy at [Qm], 132
Another look at the gear bodies of figure 3.10, 132
The moving transversal, the FAXL, and the F-surface, 134
Variation of δ-remote with the distance of Q from [Qf], 134
The point [Qs] occurring at the line of striction, 135
Position of [Qs] in the special case of equiangularity, 137
More about the gyratory motion of the triad at Q, 138
The two planes that continuously define j–Q–k, 140
Mechanical significance of [Qf], 140
From the path of Q in 1 to the slip tracks by inversion, 143
The two paths of the two Q, 144
Coaxiality of the circular hyperboloids, 145
The parabolic hyperboloid, 146
CHAPTER FIVE (A)
THE SIMPLICITY OF EQUIANGULARITY

Transition comment, 159
Prognosis, 159
Synopsis of the chapters 5, 160
The common objectives of the chapters 5B and 6, 160
Two important theorems that need to be studied, 161
Aspects of the pitch helices not well studied as yet, 161
Problems concerning our choice for the travel paths, 162
Radial offset \(R \) and the FAXL, 164
The fortuitous aspects of an equiangular architecture, 166
A selected few of the algebraic formulae, 171
Two special values of \(R \), 172
The special case when \(C \) is at \(P \), 173
An interim mention of the polyangular, 173
Last remarks and a transition comment, 173
Appendix A at chapter 5A, 174
Appendix B at chapter 5A, 176

CHAPTER FIVE (B)
SYNTHESISING AN EQUIANGULAR SET

Introduction, 177
Naked wheels, 177
The angles \(\tau, \kappa \) and \(\lambda \) at the naked wheel, 178
Rolling, rocking and boring, 181
Watershed, 182
Beginning of worked example #1 (part 1), 182
More on the lengths \(Z \) and related questions, 193
On the angles \(\alpha \) and the shapes of the slip tracks, 196
Danger-locations for excessive wear, 198
Adverse circumstances at the crossed helicals, 199
On the sets of wheels combined at figure 5B.06, 200
Beginning of part 2 of worked example #1, 200
Unwrapping the roll of paper, 204
WkEx#1(2) continued, 206
On the results of this synthesis, 207
The phantom rack, 209
The anatomy of a tooth, 212
The very small angles \(\chi \) at the crossed helicals, 212
CHAPTER SIX
THE PLAIN POLYANGULAR OPTION

Recapitulation, 237
Introduction to polyangularity, 237
Timely exclusion of an as yet unwanted difficulty, 238
On getting ready to begin, 238
On what happens in the G-space, 239
The plain polyangular and the exotic, 240
Important aspects of the equilateral transversal, 240
An important observation, 243
The figures 6.02, 243
The figure 6.03, 246
Circular cylinder of radius R coaxial with the CDL, 247
Some more-incisive remarks about the F-surface, 249
Location of $[Qf]$, 250
Finally some definitive remarks about the elusive $[Qm]$, 250
Two special plain polyangulars, 251
Again the plain and the exotic, 252
More about axodes and the naked wheels, 252
Geometric relations within the linear array, 254
The velocity vector at F, 255
The parabolic hyperboloid of the rectilinear array, 256
Need for a dedicated algebra, 256
An algebra for the plain polyangular architecture, 257
Law of the speed ratio $k = [a_3 \cos \alpha_3]/[a_2 \cos \alpha_2]$, 260
Beginning of worked example #3, 261
Numerical check on the law of the speed ratio, 270
Putting one of the paths upon the transversal, 270
Relative re-location at the axes of the wheels, 331
The flush configuration, 333
Axial adjustment for location, 333
Axial adjustment for backlash, 334
A general observation, 334

CHAPTER NINE (B)
MECHANICS OF THE PHANTOM RACK

Introduction, 335
First look at a puzzling matter, 335
Second look at the same matter, 338
Axodes in general and the ideas of Reuleaux, 339
Another theorem, 340
On deeper consideration, 346
Concluding remarks, 347

CHAPTER TEN
MATHEMATICS OF THE MACHINING

Recapitulation, 349
Some early hints about milling and hobbing, 350
The rack triad, 351
On the nagging question of the ‘conicality’ of teeth, 351
More on the shapes of teeth, 354
The swivel angle lambda, 354
The angles kappa and lambda taken together, 355
Incidentally some interesting interrelated formulae, 355
Two other important angles, gamma and theta, 356
Matters to do with delta and gamma, 357
The real rack, 358
Length-measured pitches of teeth, 360
The flat-action phenomenon, 364
First algebraic look at gamma in terms of delta, 366
Second algebraic look at gamma in terms of delta, 370
An incidental second look at alpha also, 371
An already established fact not to be overlooked, 372
The helix angles \(\theta \) at the opposite profiles of a tooth, 372
The various triads, 375
The helix angles in Beveloid gearing, 375
Aspects of the motion of the real rack cutter, 376
Some misconceptions that must be rejected, 379
Rack velocity, 380
The analogous oblique-rolling vehicular wheel, 381
How the rack moves to cut the teeth of a wheel, 382
General Spatial Involute Gearing
Phillips, J.
2003, XVIII, 498 p., Hardcover
ISBN: 978-3-540-44204-2