Contents

Introduction .. 1

Part I. Single Atom
in Transverse Electromagnetic Field

1. Quantum Principles of Two-Level Atomic Spectroscopy 7
 1.1 Hamiltonian of an Electron–Photon System 7
 1.2 Transverse Electromagnetic Field as a Photon Gas 9
 1.3 Electron–Photon Interaction. Rabi Frequency 13
 1.4 Equations for Transition Amplitudes 16
 1.5 Density Matrix of the System.
 Relation to Transition Amplitudes 18

2. Two-Photon Start–Stop Correlator 21
 2.1 Photon Counting in the Start–Stop Regime 21
 2.2 Spontaneous Fluorescence.
 Temporal Evolution of Fluorescence Line Shape 22
 2.3 Optical Absorption Line.
 Equations for Transition Amplitudes 27
 2.4 Temporal Evolution of Probabilities 30
 2.5 Temporal Evolution of Absorption Line Shape 33
 2.6 Two-Photon Start–Stop Correlator 35

3. Full Two-Photon Correlator 39
 3.1 Counting All Photon Pairs 39
 3.2 Infinite Set of Equations for Transition Amplitudes.
 Discussion of Main Approximations 40
 3.3 Equations Governing the Full Two-Photon Correlator 43
 3.4 Relating the Full
 and Start–Stop Two-Photon Correlators 46
 3.5 Frequency and Time Dependence
 of Full and Start–Stop Two-Photon Correlators 48
Part II. Phonons and Tunneling Excitations

4. **Adiabatic Interaction** .. 55
 4.1 Theoretical Description of Interacting Electrons and Nuclei .. 55
 4.2 Franck–Condon and Herzberg–Teller Interactions 57

5. **Natural Vibrations of Solids** 61
 5.1 Acoustic and Optical Phonons 61
 5.2 Localized Phonon Modes 65

6. **Tunneling Systems in Solids** 75
 6.1 Tunneling Degrees of Freedom
 in Complex Molecules and Amorphous Solids 75
 6.2 Rate Equations for Tunneling Systems 78
 6.3 One-Phonon Transition Probabilities in Tunneling Systems .. 80
 6.4 Kinetics of Tunneling Systems 84
 6.5 Tunneling Systems in Polymers and Glasses 86
 Tunnelon–Phonon and Electron–Tunnelon Interaction 90

Part III. Spectroscopy of a Single Impurity Center

7. **Density Matrix for an Impurity Center** 95
 7.1 Transition Amplitudes
 in the Electron–Phonon–Tunnelon System 95
 7.2 Equations for the Density Matrix 99
 7.3 Reducing Equations for the Full Density Matrix
 to the Optical Bloch Equations 104

8. **One- and Two-Photon Counting Methods**
 in the Spectroscopy of a Single Impurity Center 109
 8.1 Two-Photon Correlator for a Two-Level Impurity Center 109
 8.2 Influence of a Triplet Level on the Two-Photon Correlator.
 Photon Bunching and Antibunching 112
 8.3 One-Photon Counting Method. Quantum Trajectories 119
Part IV. Optical Band Shape Theory for Impurity Centers

9. Stochastic Theories of Line Broadening 125
 9.1 Dynamic and Stochastic Approaches to the Line-Broadening Problem 125
 9.2 Stochastic Theory Due to Anderson and Weiss 126
 9.3 Anderson Theory for Optical Lines 129
 9.4 Exchange Model for Line Broadening 131

 10.1 Absorption Cross-Section and the Probability of Light Emission 138
 10.2 Electron–Phonon Optical Transitions in a Condon Approximation at $T = 0$ 139
 10.3 Zero-Phonon Line and Phonon Side Band 142
 10.4 Influence of Temperature on the ZPL Intensity 149
 10.5 Optical Bands for Strong Electron–Phonon Coupling 150

11. Vibronic Spectra of Complex Molecules 153
 11.2 Influence of the HT Interaction on Optical Bands 156
 11.3 Interference of HT and FC Amplitudes. Breakdown of the Mirror Symmetry of Conjugate Absorption and Fluorescence Bands 158
 11.4 Theoretical Treatment of Electron–Phonon and Vibronic Spectra 161

12. Dynamical Theory of Line Broadening 167
 12.1 Specific Features of the Quadratic FC Interaction 168
 12.2 Cumulant Expansion of the Dipolar Correlator 170
 12.3 Broadening and Shift of the ZPL at Weak Coupling with Acoustic and Localized Phonons 173
 12.4 Quantum Phonon Green Functions 177
 12.5 Temperature Broadening and Shift of the ZPL at Arbitrary Strength of the Quadratic FC Interaction 179
 12.6 General Expression for the Cumulant Function of an Electron–Phonon System 186
 12.7 Theoretical Treatment of Experimental Data for Temperature Broadening of the ZPL 187
Part V. Methods of Selective Spectroscopy

13. Fluorescence Line Narrowing .. 195
 13.1 Frequency Selection of Molecules by Laser Excitation 195
 13.2 Fluorescence Line Narrowing
 and Its Relation to the Full Two-Photon Correlator 198
 13.3 Laser Fluorescence Analysis 202

14. Spectral Hole Burning in Inhomogeneous Optical Bands 205
 14.1 Transient Spectral Hole Burning.
 Relation to the Full Two-Photon Correlator 205
 14.2 Persistent Spectral Holes 209
 14.3 Kinetics of Persistent Hole Burning.
 Hole Shape in the Short Time Limit 213
 14.4 Hole Burning with Photoactive Photoproduct, Antiholes ... 216
 14.5 Polarization Aspects in Spectral Holes and Antiholes..... 221
 14.6 Photon-Gated Persistent Spectral Hole Burning 226

Part VI. Transient Coherent Phenomena in Solids

15. Coherent Radiation of Molecular Ensembles 233
 15.1 Dephasing and Energy Relaxation.
 Coherent Spontaneous Emission 233
 15.2 Fast Optical Dephasing 237

16. Photon Echo .. 241
 16.1 Interaction of a Single Atom
 with a Classical Electromagnetic Field 241
 16.2 Molecule Interacting with a Classical Electromagnetic Field,
 Phonons, and Tunnelons 244
 16.3 Simplest Theory of the Two-Pulse Photon Echo 246
 16.4 Bloch Vector and Its Temporal Evolution 249
 16.5 Exponential Two-Pulse Photon Echo 251
 16.6 Three-Pulse Photon Echo 255
 16.7 Long-Lived 3PE .. 258
 16.8 Space Anisotropy of Echo Radiation 261

17. Nonexponential Photon Echo 263
 17.1 Generalized Bloch Vector 263
 17.2 Long-Lived Stimulated Photon Echo 265
 17.3 Picosecond SPE .. 271
 17.4 Two-Pulse Femtosecond Photon Echo 272
 17.5 3PE at Arbitrary Waiting Time t_w 278
Part VII. Low Temperature Spectral Diffusion in Polymers and Glasses

18. Theory of Electron–Tunnelon Optical Band

- **18.1 General Expression for the Cumulant Function of the Electron–Tunnelon System**
- **18.2 Tunnelon Green Function**
- **18.3 Temperature Broadening of the Zero Tunnelon Optical Line**
- **18.4 Dipolar Correlator for a Chromophore–TLS System**
 - Solution of the Integral Equation
- **18.5 Electron–Tunnelon Optical Band Shape Function**

19. Chromophore Interacting with Phonons and TLSs Which Are not in Thermal Equilibrium

- **19.1 Hamiltonian of the Electron–Phonon–Tunnelon System**
- **19.2 Equations for the Density Matrix of the Electron–Phonon–Tunnelon System**
- **19.3 Spontaneous and Light-Induced Transitions in TLSs**
- **19.4 Interaction with One TLS. Approximate Solution**
- **19.5 Interaction with Many TLSs Undergoing Spontaneous Tunneling**

20. Dynamical Theory of Spectral Diffusion

- **20.1 Absorption Coefficient of a Single Guest Molecule Interacting with Nonequilibrium TLSs**
- **20.2 Dependence of the Optical Dephasing Time T_2 on the Time Scale of the Experiment**
- **20.3 Logarithmic Temporal Line Broadening. Deviation from the Logarithmic Temporal Law**

21. Theory of Tunneling Transitions in TLSs

- **21.1 General Formulas for the Tunneling Probability**
- **21.2 Inelastic Tunneling Assisted by Acoustic and Localized Phonon Modes**
- **21.3 Elastic Tunneling**

22. Investigating TLS Relaxation by Single-Molecule Spectroscopy

- **22.1 Two-Photon Correlator of a Molecule Interacting with TLSs**
- **22.2 Spontaneous and Light-Induced Jumps of the Optical Line. Relation to Hole Burning**
- **22.3 Analysis of Complicated Spectral Trajectories Using the Two-Photon Correlator**
Selective Spectroscopy of Single Molecules
Osad'ko, I.
2003, XII, 382 p., Hardcover
ISBN: 978-3-540-44101-4