Preface

Since the dawn of mankind, observers of the sky have wondered at the sudden appearance of new stars on the seemingly unchanging heavens and, for at least 2000 years, have recorded these phenomena in their annals and archives. Even in more modern times, since the discovery of SN1885A in S Andromeda which figured in the important “island universe” discussions of the 1920’s, the puzzle of supernovae (SNe) has played an important role in astrophysics. Only with the seminal work of Fritz Zwicky and Walter Baade in the 1930’s did we begin to understand the differences between novae and SNe and the importance of SNe as the fonts of energy for the interstellar medium and as drivers of chemical evolution in galaxies. As recently as the 1940’s and 1950’s the early days of radio astronomy were heavily influenced by the familiar names of Cassiopeia A and Taurus A, two young supernova remnants, and two Nobel prizes have been awarded for discovery and study of a related phenomenon, pulsars.

In spite of the great age of the study of SNe, since at least the Chinese records of SN185 and probably earlier, the field is, in fact, very young having only attracted a large devoted following since the spectacular Type II SN1987A in the Large Magellanic Cloud, the first naked-eye SN in more than 400 years.

On a seemingly non-intersecting parallel path, γ-ray bursts (GRBs) discovered by the Air Force VELA satellites in the 1960’s presented a mystery to researchers for 30 years. Finally, the launch of the Italian/Dutch BeppoSAX satellite in 1996 provided sufficiently fast and accurate positional information to allow detection and study of their “afterglows” at other wavelengths. These results then provided evidence that, at least at some level, the fields of GRB and SN studies merge through the possible connection of Type Ib/c SNe, so that one of our most recent astronomical puzzles appears to be at least partially solved by reference to our ancient interest in SNe.

Although discovery, observation, and interpretation of new examples of SNe and GRBs continues, the end of the Compton Gamma-Ray Observatory (CGRO) era in 2000 and of the BeppoSAX operations in 2002 provides a significant breakpoint for trying to summarize the current status of these extremely active areas of study. Thus, experts from many areas of SN and GRB research have agreed to contribute chapters to this monograph to assemble a coherent picture.

Because the two areas of research have still only partially merged, and may never totally merge because of the possibility that some types of GRBs originate in other physical processes, we have chosen to roughly divide this work into two
parts – SN research and GRB research with bridging chapters to explore the known and likely relations between the two areas. We hope that this monograph contributes some small part to our ultimate understanding of these exciting phenomena.

Before proceeding further, however, I would like to thank all of the people and institutions which have contributed to the assembly of this volume. Foremost, I wish to thank all of the chapter authors who have contributed their knowledge, expertise, time, and effort to providing up-to-date descriptions of the many areas of supernova and GRB research and for working so willingly with me on the preparation and editing of this volume. Obviously, nothing could have been accomplished without the support of the Office of Naval Research (ONR), which provides the 6.1 funding for my research, and the Naval Research Laboratory (NRL) which provides me with the time and facilities necessary. Although too many individuals to list have been supportive of my effort, I must separately thank Dr. Lee J Rickard, who has been extremely tolerant of my disappearing for days at a time and who has shielded me from so many other demanding and time consuming tasks.

N.B.: Because the fields of supernova and GRB research tend to use somewhat different nomenclature for the same thing – radio supernova flux density light curves are often described by $S \propto \nu^{\pm \alpha} t^{\pm \beta}$ while GRB workers tend to use $F_\nu \propto \nu^{\pm \beta} t^{\pm \alpha}$ – I have attempted to standardize everywhere to the format $F_\nu \propto \nu^{+\alpha} t^{+\beta}$. I have also attempted to make all chapters consistent with using: α = spectral index, β = decline rate, F_ν = flux density, γ = gamma-rays, Γ = Lorentz factor, τ = optical depth, t = time, and T = temperature. Although I have tried to minimize it, there may be some remaining variation in notation between chapters.

Washington, DC, USA

Kurt W. Weiler
Naval Research Laboratory

January 2003
List of Contributors

E. Baron
University of Oklahoma
Norman, OK 73019
USA
baron@mail.nhn.ou.edu

David Branch
University of Oklahoma
Norman, OK 73019
USA
branch@mail.nhn.ou.edu

Enrico Cappellaro
Osservatorio Astronomico di Capodimonte
via Moiariello 16
80181 Napoli
Italy
cappellaro@na.astro.it

Filippo Frontera
Physics Department
University of Ferrara
Ferrara
Italy
and
CNR
Bologna
Italy
frontera@fe.infn.it

Roger A. Chevalier
Department of Astronomy
University of Virginia
PO Box 3818
Charlottesville, VA 22903
USA
rac5x@virginia.edu

Claes Fransson
Stockholm Observatory
Department of Astronomy
SCFAB
106 91 Stockholm
Sweden
claes@astro.su.se

Titus J. Galama
Astronomy Department
Calif. Inst. of Technology
Pasadena, CA 91125
USA
tjg@astro.caltech.edu

David A. Green
Cavendish Laboratory
University of Cambridge
Madingley Road
Cambridge CB3 0HE
United Kingdom
dag9@cam.ac.uk

Kevin Hurley
University of California
Space Sciences Laboratory
Berkeley, CA 94720-7450
USA
khurley@sunspot.ssl.berkeley.edu
Stefan Immler
Dept. of Astron. and Astrophys.
Pennsylvania State Univ.
University Park, PA 16802
USA
immler@astro.psu.edu

Koichi Iwamoto
Department of Physics
College of Science and Technology
Nihon University
Tokyo 101-8308
Japan
iwamoto@phys.cst.nihon-u.ac.jp

David J. Jeffery
NM Inst. of Mining and Technology
Socorro, NM 87801
USA
jeffery@kestrel.nmt.edu

Bruno Leibundgut
European Southern Observatory
Karl-Schwarzschild-Strasse 2
85748 Garching
Germany
bleibundgut@eso.org

Walter H.G. Lewin
Center for Space Research
and
Department of Physics
Massachusetts Inst. of Technology
Cambridge, MA 02139-4307
USA
lewin@space.mit.edu

Zhi-Yun Li
Department of Astronomy
University of Virginia
Charlottesville, VA 22903
USA
z14h@virginia.edu

Abraham Loeb
Astronomy Department
Harvard University
Cambridge, MA 02138
USA
aloeb@cfa.harvard.edu

Keiichi Maeda
Department of Astronomy
and
Research Centr. for Early Univ.
School of Science
The University of Tokyo
Tokyo 113-0033
Japan
maeda@astron.s.u-tokyo.ac.jp

Paolo A. Mazzali
Astronomical Observatory of Trieste
Via G.B. Tiepolo 11
34131 Trieste
Italy
mazzali@ts.astro.it

Richard McCray
JILA
University of Colorado
Boulder CO 80309-0440
USA
dick@jila.colorado.edu

Marcos J. Montes
Naval Research Laboratory
Code 7212
Washington, DC 20375-5320
USA
montes@rsd.nrl.navy.mil

Takayoshi Nakamura
Department of Astronomy
and
Research Center for the Early Universe
School of Science
The University of Tokyo
Tokyo 113-0033
Japan
Ken’ichi Nomoto
Department of Astronomy
and
Research Centr. for Early Univ.
School of Science
University of Tokyo
Tokyo 113-0033
Japan
nomoto@astron.s.u-tokyo.ac.jp

Nino Panagia
STScI
and
Astrophysics Division
Space Science Department of ESA
3700 San Martin Drive
Baltimore, MD 21218
USA
panagia@stsci.edu

Saul Perlmutter
Physics Division
Lawrence Berkeley National Lab.
University of California
Berkeley, CA 94720
USA
saul@lbl.gov

Elena Pian
INAF
Astronomical Observatory of Trieste
Via G.B. Tiepolo 11
34131 Trieste
Italy
pian@ts.astro.it

Brian P. Schmidt
Research School of Astron. and Ap.
The Australian National University
via Cotter Road
Weston Creek, ACT 2611
Australia
brian@mso.anu.edu.au

Richard Sramek
NRAO
PO Box 0
Socorro, NM 87801
USA
dsramek@nrao.edu

F. Richard Stephenson
Department of Physics
University of Durham
Durham DH1 3LE
United Kingdom
F.R.Stephenson@durham.ac.uk

Nicholas Suntzeff
Cerro Tololo
Inter-American Observatory
Casilla 603
La Serena
Chile
nsuntzeff@noao.edu

Massimo Turatto
Osservatorio Astronomico di Padova
vicolo dell’Osservatorio 5
35122 Padova
Italy
turatto@pd.astro.it

Eli Waxman
Weizmann Institute of Science
Rehovot 76100
Israel
waxman@wicc.weizmann.ac.il

Kurt W. Weiler
Naval Research Laboratory
Code 7213
Washington, DC 20375-5320
USA
Kurt.Weiler@nrl.navy.mil
Supernovae and Gamma-Ray Bursters
Weiler, K. (Ed.)
2003, XI, 472 p., Hardcover
ISBN: 978-3-540-44053-6