Contents

Introduction .. 1

1 **Navier–Stokes–Fourier Exact Model** 11
 1.1 The Transport Theorem ... 11
 1.2 The Equation of Continuity 12
 1.3 The Cauchy Equation of Motion 12
 1.4 The Constitutive Equations of a Viscous Fluid 13
 1.4.1 Stokes’s Four Postulates: Stokesian Fluid 14
 1.4.2 Classical Linear Viscosity Theory: Newtonian Fluid .. 15
 1.5 The Energy Equation and Fourier’s Law 17
 1.5.1 The Total Energy Equation 17
 1.5.2 Heat Conduction and Fourier’s Law 18
 1.6 The Navier–Stokes–Fourier Equations 19
 1.6.1 The NSF Equation for an Ideal Gas
 when C_v and C_p are Constants 20
 1.6.2 Dimensionless NSF Equations 21
 1.6.3 Reduced Dimensionless Parameters 22
 1.7 Conditions for Unsteady-State NSF Equations 25
 1.7.1 The Problem of Initial Conditions 26
 1.7.2 Boundary Conditions 28

2 **Some Features and Various Forms of NSF Equations** 35
 2.1 Isentropicity, Polytropic Gas, Barotropic Motion,
 and Incompressibility 35
 2.1.1 NS Equations ... 35
 2.1.2 Navier System ... 36
 2.1.3 Navier System with Time-Dependent Density 37
 2.1.4 Fourier Equation 38
 2.2 Some Interesting Issues in Navier Incompressible Fluid Flow 39
 2.2.1 The Pressure Poisson Equation 41
 2.2.2 $\psi_N - \omega_N$ and $u_N - \omega_N$ Formulations 42
 2.2.3 The Omnipotence of the Incompressibility Constraint 43
 2.2.4 A First Statement of a Well-Posed Initial
 Boundary-Value Problem (IBVP) for Navier Equations 46
3 Some Simple Examples of Navier, NS and NSF Viscous Fluid Flows

3.1 Plane Poiseuille Flow and the Orr–Sommerfeld Equation

3.1.1 The Orr–Sommerfeld Equation

3.1.2 A Double-Scale Technique for Resolving the Orr–Sommerfeld Equation

3.2 Steady Flow Through an Arbitrary Cylinder under Pressure

3.2.1 The Case of a Circular Cylinder

3.2.2 The Case of an Annular Region Between Concentric Cylinders

3.2.3 The Case of a Cylinder of Arbitrary Section

3.3 Steady-State Couette Flow Between Cylinders in Relative Motion

3.3.1 The Classic Taylor Problem

3.3.2 The Taylor Number

3.4 The Bénard Linear Problem and Thermal Instability

3.5 The Bénard Linear Problem with a Free Surface and the Marangoni Effect

3.5.1 The Case when the Neutral State is Stationary

3.5.2 Free-Surface Deformation

3.6 Flow due to a Rotating Disc

3.6.1 Small Values of ζ

3.6.2 Large Values of ζ

3.6.3 Joining (Matching)

3.7 One-Dimensional Unsteady-State NSF Equations and the Rayleigh Problem

3.7.1 Small M^2 Solution – Close to the Flat Plate but far from the Initial Time

3.7.2 Small M^2 Solution – Far from a Flat Plate

3.7.3 Small M^2 Solution – Close to the Initial Time

3.8 Complementary Remarks

4 The Limit of Very Large Reynolds Numbers

4.1 Introduction

4.2 Classical Hierarchical Boundary-Layer Concept and Regular Coupling
4.2.1 A 2-D Steady-State Navier Equation for the Stream Function .. 93
4.2.2 A Local Form of the 2-D Steady-State Navier Equation for the Stream Function 94
4.2.3 A Large Reynolds Number and “Principal” and “Local” Approximations 94
4.2.4 Matching .. 96
4.2.5 The Prandtl–Blasius and Blasius BL Problems ... 97
4.3 Asymptotic Structure
of Unsteady-State NSF Equations at Re \gg 1103
4.3.1 Four Significant Degeneracies of NSF Equations ... 105
4.3.2 Formulation of a Simplified Initial Boundary-Value Problem for the NSF Full Unsteady-State Equations . 108
4.3.3 Various Facets of Large Reynolds Number Unsteady-State Flow 109
4.3.4 The Two Adjustment Problems .. 114
4.4 The Triple-Deck Concept and Singular Interactive Coupling .. 118
4.4.1 The Triple-Deck Theory in 2-D Steady-State Navier Flow .. 120
4.5 Complementary Remarks .. 126
4.5.1 Three-Dimensional Boundary-Layer Equations .. 130
4.5.2 Unsteady-State Incompressible Boundary-Layer Formulation 137
4.5.3 The Inviscid Limit: Some Mathematical Results .. 140
4.5.4 Rigorous Results for the Boundary-Layer Theory ... 144

5 The Limit of Very Low Reynolds Numbers ... 145
5.1 Large Viscosity Limits and Stokes and Oseen Equations ... 145
5.1.1 Steady-State Stokes Equation .. 145
5.1.2 Unsteady-State Oseen Equation .. 146
5.1.3 Unsteady-State Stokes and Steady-State Oseen Equations 147
5.1.4 Unsteady-State Matched Stokes–Oseen Solution at Re \ll 1 for the Flow Past a Sphere ... 147
5.2 Low Reynolds Number Flow due to an Impulsively Started Circular Cylinder 149
5.2.1 Formulation of the Steady-State Problem ... 150
5.2.2 The Unsteady-State Problem .. 152
5.3 Compressible Flow .. 153
5.3.1 The Stokes Limiting Case and Steady-State Compressible Stokes Equations 154
5.3.2 The Oseen Limiting Case and Steady-State Compressible Oseen Equations 155
5.4 Film Flow on a Rotating Disc:
Asymptotic Analysis for Small Re .. 158
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4.1</td>
<td>Unsteady-State Adjustment to the Stokes Model in a Bounded Deformable Cavity $\Omega(t)$</td>
<td>215</td>
</tr>
<tr>
<td>7.4.2</td>
<td>On the Wake in Low Reynolds Number Flow</td>
<td>218</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Oscillatory Disturbances as Admissible Solutions and their Possible Relationship to the Von Karman Sheet Phenomenon</td>
<td>220</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Some References</td>
<td>223</td>
</tr>
<tr>
<td>7.5</td>
<td>The Bénard–Marangoni Problem: An Alternative</td>
<td>224</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Dimensionless Dominant Equations</td>
<td>226</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Dimensionless Dominant Boundary Conditions</td>
<td>227</td>
</tr>
<tr>
<td>7.5.3</td>
<td>The Rayleigh–Bénard (RB) Thermal Shallow Convection Problem</td>
<td>229</td>
</tr>
<tr>
<td>7.5.4</td>
<td>The Bénard–Marangoni (BM) Problem</td>
<td>231</td>
</tr>
<tr>
<td>7.6</td>
<td>Some Aspects of Nonadiabatic Viscous Atmospheric Flow</td>
<td>233</td>
</tr>
<tr>
<td>7.6.1</td>
<td>The L-SSHV Equations</td>
<td>233</td>
</tr>
<tr>
<td>7.6.2</td>
<td>The Tangent HV (THV) Equations</td>
<td>238</td>
</tr>
<tr>
<td>7.6.3</td>
<td>The Quasi-Geostrophic Model</td>
<td>240</td>
</tr>
<tr>
<td>7.7</td>
<td>Miscellaneous Topics</td>
<td>246</td>
</tr>
<tr>
<td>7.7.1</td>
<td>The Entrainment of a Viscous Fluid in a Two-Dimensional Cavity</td>
<td>246</td>
</tr>
<tr>
<td>7.7.2</td>
<td>Unsteady-State Boundary Layers</td>
<td>253</td>
</tr>
<tr>
<td>7.7.3</td>
<td>Various Topics Related to Boundary-Layer Equations</td>
<td>258</td>
</tr>
<tr>
<td>7.7.4</td>
<td>More on the Triple-Deck Theory</td>
<td>260</td>
</tr>
<tr>
<td>7.7.5</td>
<td>Some Problems Related to Navier Equations for an Incompressible Viscous Fluid</td>
<td>266</td>
</tr>
<tr>
<td>7.7.6</td>
<td>Low and Large Prandtl Number Flow</td>
<td>272</td>
</tr>
<tr>
<td>7.7.7</td>
<td>A final comment</td>
<td>275</td>
</tr>
<tr>
<td>8</td>
<td>Some Aspects of a Mathematically Rigorous Theory</td>
<td>277</td>
</tr>
<tr>
<td>8.1</td>
<td>Classical, Weak, and Strong Solutions of the Navier Equations</td>
<td>278</td>
</tr>
<tr>
<td>8.2</td>
<td>Galerkin Approximations and Weak Solutions of the Navier Equations</td>
<td>283</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Some Comments and Bibliographical Notes</td>
<td>287</td>
</tr>
<tr>
<td>8.3</td>
<td>Rigorous Mathematical Results for Navier Incompressible and Viscous Fluid Flows</td>
<td>289</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Navier Equations in an Unbounded Domain</td>
<td>295</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Some Recent Rigorous Results</td>
<td>298</td>
</tr>
<tr>
<td>8.4</td>
<td>Rigorous Mathematical Results for Compressible and Viscous Fluid Flows</td>
<td>300</td>
</tr>
<tr>
<td>8.4.1</td>
<td>The Incompressible Limit</td>
<td>305</td>
</tr>
<tr>
<td>8.5</td>
<td>Some Concluding Remarks</td>
<td>307</td>
</tr>
</tbody>
</table>
9 Linear and Nonlinear Stability of Fluid Motion 311
 9.1 Some Aspects of the Theory of the Stability of Fluid Motion 311
 9.1.1 Linear, Weakly Nonlinear, Nonlinear, and Hydrodynamic Stability 312
 9.1.2 Reynolds–Orr, Energy, Sufficient Stability Criterion . 316
 9.1.3 An Evolution Equation for Studying the Stability of a Basic Solution of Fluid Flow 317
 9.2 Fundamental Ideas on the Theory of the Stability of Fluid Motion 319
 9.2.1 Linear Case 320
 9.2.2 Nonlinear Case 322
 9.3.1 Linear Theory 326
 9.3.2 Nonlinear Theory – Confined Perturbations. Landau and Stuart Equations 328
 9.3.3 Nonlinear Theory – Unconfined Perturbations. General Setting 331
 9.3.4 Nonlinear Theory – Unconfined Perturbations. Tollmien–Schlichting Waves 332
 9.3.5 Nonlinear Theory – Unconfined Perturbations. Rayleigh–Bénard Convection 335
 9.4 Some Facets of the RB and BM Problem 337
 9.4.1 Rayleigh–Bénard Convective Instability 337
 9.4.2 Bénard–Marangoni (BM) Thermocapillary Instability Problem for a Thin Layer (Film) with a Deformable Free Surface 356
 9.5 Couette–Taylor Viscous Flow Between Two Rotating Cylinders 370
 9.5.1 A Short Survey 370
 9.5.2 Bifurcations 376
 9.6 Concluding Comments and Remarks 380

10 A Finite-Dimensional Dynamical System Approach to Turbulence 387
 10.1 A Phenomenological Approach to Turbulence 387
 10.2 Bifurcations in Dissipative Dynamical Systems 392
 10.2.1 Normal Form of the Pitchfork Bifurcation 395
 10.2.2 Normal Form of the Hopf Bifurcation 396
 10.2.3 Bifurcation from a Periodic Orbit to an Invariant Torus 398
 10.3 Transition to Turbulence: Scenarios, Routes to Chaos 398
 10.3.1 The Landau–Hopf “Inadequate” Scenario 399
 10.3.2 The Ruelle–Takens–Newhouse Scenario 399
 10.3.3 The Feigenbaum Scenario 403
Theory and Applications of Viscous Fluid Flows
Zeytounian, R.K.
2004, XVI, 488 p., Hardcover
ISBN: 978-3-540-44013-0