Table of Contents

Chapter I. The General Theory of Stochastic Processes, Semimartingales and Stochastic Integrals 1

1. Stochastic Basis, Stopping Times, Optional σ-Field, Martingales .. 1

 §1a. Stochastic Basis 2

 §1b. Stopping Times 4

 §1c. The Optional σ-Field 5

 §1d. The Localization Procedure 8

 §1e. Martingales 10

 §1f. The Discrete Case 13

2. Predictable σ-Field, Predictable Times 16

 §2a. The Predictable σ-Field 16

 §2b. Predictable Times 17

 §2c. Totally Inaccessible Stopping Times 20

 §2d. Predictable Projection 22

 §2e. The Discrete Case 25

3. Increasing Processes 27

 §3a. Basic Properties 27

 §3b. Doob-Meyer Decomposition and Compensators of Increasing Processes 32

 §3c. Lenglart Domination Property 35

 §3d. The Discrete Case 36

4. Semimartingales and Stochastic Integrals 38

 §4a. Locally Square-Integrable Martingales 38

 §4b. Decompositions of a Local Martingale 40

 §4c. Semimartingales 43

 §4d. Construction of the Stochastic Integral 46

 §4e. Quadratic Variation of a Semimartingale and Ito’s Formula 51

 §4f. Doléans-Dade Exponential Formula 58

 §4g. The Discrete Case 62
Table of Contents

Chapter II. Characteristics of Semimartingales and Processes with Independent Increments 64

1. Random Measures .. 64
 §1a. General Random Measures 65
 §1b. Integer-Valued Random Measures 68
 §1c. A Fundamental Example: Poisson Measures 70
 §1d. Stochastic Integral with Respect to a Random Measure 71

2. Characteristics of Semimartingales 75
 §2a. Definition of the Characteristics 75
 §2b. Integrability and Characteristics 81
 §2c. A Canonical Representation for Semimartingales 84
 §2d. Characteristics and Exponential Formula 85

3. Some Examples .. 91
 §3a. The Discrete Case 91
 §3b. More on the Discrete Case 93
 §3c. The “One-Point” Point Process and Empirical Processes 97

4. Semimartingales with Independent Increments 101
 §4a. Wiener Processes 102
 §4b. Poisson Processes and Poisson Random Measures 103
 §4c. Processes with Independent Increments and Semimartingales . 106
 §4d. Gaussian Martingales 111

5. Processes with Independent Increments
 Which Are Not Semimartingales 114
 §5a. The Results .. 114
 §5b. The Proofs .. 116

6. Processes with Conditionally Independent Increments 124

7. Progressive Conditional Continuous PIIs 128

8. Semimartingales, Stochastic Exponential and Stochastic Logarithm ... 134
 §8a. More About Stochastic Exponential and Stochastic Logarithm ... 134
 §8b. Multiplicative Decompositions and Exponentially Special
 Semimartingales 138

Chapter III. Martingale Problems and Changes of Measures 142

1. Martingale Problems and Point Processes 143
 §1a. General Martingale Problems 143
 §1b. Martingale Problems and Random Measures 144
 §1c. Point Processes and Multivariate Point Processes 146
Table of Contents

1. Introduction .. 1

2. Martingale Problems and Semimartingales 151
 §2a. Formulation of the Problem 152
 §2b. Example: Processes with Independent Increments 154
 §2c. Diffusion Processes and Diffusion Processes with Jumps 155
 §2d. Local Uniqueness 159

3. Absolutely Continuous Changes of Measures 165
 §3a. The Density Process 165
 §3b. Girsanov’s Theorem for Local Martingales 168
 §3c. Girsanov’s Theorem for Random Measures 170
 §3d. Girsanov’s Theorem for Semimartingales 172
 §3e. The Discrete Case 177

4. Representation Theorem for Martingales 179
 §4a. Stochastic Integrals with Respect to a Multi-Dimensional
 Continuous Local Martingale 179
 §4b. Projection of a Local Martingale on a Random Measure 182
 §4c. The Representation Property 185
 §4d. The Fundamental Representation Theorem 187

5. Absolutely Continuous Change of Measures:
 Explicit Computation of the Density Process 191
 §5a. All \(P \)-Martingales Have the Representation Property
 Relative to \(X \) 192
 §5b. \(P' \) Has the Local Uniqueness Property 196
 §5c. Examples ... 200

6. Integrals of Vector-Valued Processes and \(\sigma \)-martingales 203
 §6a. Stochastic Integrals with Respect to a Multi-Dimensional
 Locally Square-integrable Martingale 204
 §6b. Integrals with Respect to a Multi-Dimensional Process
 of Locally Finite Variation 206
 §6c. Stochastic Integrals with Respect to a Multi-Dimensional
 Semimartingale 207
 §6d. Stochastic Integrals: A Predictable Criterion 212
 §6e. \(\Sigma \)–localization and \(\sigma \)–martingales 214

7. Laplace Cumulant Processes and Esscher’s Change of Measures 219
 §7a. Laplace Cumulant Processes of Exponentially Special
 Semimartingales 219
 §7b. Esscher Change of Measure 222
Chapter IV. Hellinger Processes, Absolute Continuity and Singularity of Measures .. 227
1. Hellinger Integrals and Hellinger Processes 228
 §1a. Kakutani-Hellinger Distance and Hellinger Integrals 228
 §1b. Hellinger Processes 230
 §1c. Computation of Hellinger Processes in Terms of the Density Processes ... 234
 §1d. Some Other Processes of Interest 237
 §1e. The Discrete Case 242
2. Predictable Criteria for Absolute Continuity and Singularity 245
 §2a. Statement of the Results 245
 §2b. The Proofs .. 248
 §2c. The Discrete Case 252
3. Hellinger Processes for Solutions of Martingale Problems 254
 §3a. The General Setting 255
 §3b. The Case Where P and P' Are Dominated by a Measure
 Having the Martingale Representation Property 257
 §3c. The Case Where Local Uniqueness Holds 266
4. Examples .. 272
 §4a. Point Processes and Multivariate Point Processes 272
 §4b. Generalized Diffusion Processes 275
 §4c. Processes with Independent Increments 277

Chapter V. Contiguity, Entire Separation, Convergence in Variation ... 284
1. Contiguity and Entire Separation 284
 §1a. General Facts .. 284
 §1b. Contiguity and Filtrations 290
 §2a. Statements of the Results 291
 §2b. The Proofs .. 294
 §2c. The Discrete Case 301
3. Examples .. 304
 §3a. Point Processes .. 304
 §3b. Generalized Diffusion Processes 305
 §3c. Processes with Independent Increments 306
4. Variation Metric .. 309
 §4a. Variation Metric and Hellinger Integrals 310
 §4b. Variation Metric and Hellinger Processes 312
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>§4c. Examples: Point Processes and Multivariate Point Processes</td>
<td>318</td>
</tr>
<tr>
<td>§4d. Example: Generalized Diffusion Processes</td>
<td>322</td>
</tr>
<tr>
<td>Chapter VI. Skorokhod Topology and Convergence of Processes</td>
<td>324</td>
</tr>
<tr>
<td>§1a. Introduction and Notation</td>
<td>325</td>
</tr>
<tr>
<td>§1b. The Skorokhod Topology: Definition and Main Results</td>
<td>327</td>
</tr>
<tr>
<td>§1c. Proof of Theorem 1.14</td>
<td>329</td>
</tr>
<tr>
<td>§2a. Continuity Properties of some Functions</td>
<td>337</td>
</tr>
<tr>
<td>§2b. Increasing Functions and the Skorokhod Topology</td>
<td>342</td>
</tr>
<tr>
<td>§3a. Weak Convergence of Probability Measures</td>
<td>347</td>
</tr>
<tr>
<td>§3b. Application to Càdlàg Processes</td>
<td>348</td>
</tr>
<tr>
<td>§4a. Aldous’ Criterion for Tightness</td>
<td>355</td>
</tr>
<tr>
<td>§4b. Application to Martingales and Semimartingales</td>
<td>358</td>
</tr>
<tr>
<td>§5a. Criteria for Semimartingales</td>
<td>362</td>
</tr>
<tr>
<td>§5b. An Auxiliary Result</td>
<td>365</td>
</tr>
<tr>
<td>§5c. Proof of Theorem 5.17</td>
<td>367</td>
</tr>
<tr>
<td>§6a. The P-UT Condition</td>
<td>377</td>
</tr>
<tr>
<td>§6b. Tightness and the P-UT Property</td>
<td>382</td>
</tr>
<tr>
<td>§6c. Convergence of Stochastic Integrals and Quadratic Variation</td>
<td>382</td>
</tr>
<tr>
<td>§6d. Some Additional Results</td>
<td>386</td>
</tr>
<tr>
<td>Chapter VII. Convergence of Processes with Independent Increments</td>
<td>389</td>
</tr>
<tr>
<td>§2a. Convergence of Infinitely Divisible Distributions</td>
<td>394</td>
</tr>
<tr>
<td>§2b. Some Lemmas on Characteristic Functions</td>
<td>398</td>
</tr>
<tr>
<td>§2c. Convergence of Rowwise Independent Triangular Arrays</td>
<td>402</td>
</tr>
<tr>
<td>§2d. Finite-Dimensional Convergence of PII-Semimartingales</td>
<td>408</td>
</tr>
<tr>
<td>§3a. The Results</td>
<td>413</td>
</tr>
<tr>
<td>§3b. Sufficient Condition for Convergence Under 2.48</td>
<td>418</td>
</tr>
</tbody>
</table>
§3c. Necessary Condition for Convergence 418
§3d. Sufficient Condition for Convergence 424

4. More on the General Case .. 428
 §4a. Convergence of Non-Infinitesimal Rowwise Independent
 Arrays ... 428
 §4b. Finite-Dimensional Convergence for General PII 436
 §4c. Another Necessary and Sufficient Condition for Functional
 Convergence 439

5. The Central Limit Theorem 444
 §5a. The Lindeberg-Feller Theorem 445
 §5b. Zolotarev’s Type Theorems 446
 §5c. Finite-Dimensional Convergence of PII’s to a Gaussian
 Martingale .. 450
 §5d. Functional Convergence of PII’s to a Gaussian Martingale 452

Chapter VIII. Convergence to a Process with Independent Increments . . 456
1. Finite-Dimensional Convergence, a General Theorem 456
 §1a. Description of the Setting for This Chapter 456
 §1b. The Basic Theorem 457
 §1c. Remarks and Comments 459

2. Convergence to a PII Without Fixed Time of Discontinuity 460
 §2a. Finite-Dimensional Convergence 461
 §2b. Functional Convergence 464
 §2c. Application to Triangular Arrays 465
 §2d. Other Conditions for Convergence 467

3. Applications ... 469
 §3a. Central Limit Theorem: Necessary and Sufficient Conditions . . 470
 §3b. Central Limit Theorem: The Martingale Case 473
 §3c. Central Limit Theorem for Triangular Arrays 477
 §3d. Convergence of Point Processes 478
 §3e. Normed Sums of I.I.D. Semimartingales 481
 §3f. Limit Theorems for Functionals of Markov Processes 486
 §3g. Limit Theorems for Stationary Processes 489

4. Convergence to a General Process with Independent Increments 499
 §4a. Proof of Theorem 4.1 When the Characteristic Function of X,
 Vanishes Almost Nowhere 501
 §4b. Convergence of Point Processes 503
 §4c. Convergence to a Gaussian Martingale 504
5. Convergence to a Mixture of PII’s, Stable Convergence
 and Mixing Convergence 506
 §5a. Convergence to a Mixture of PII’s 506
 §5b. More on the Convergence to a Mixture of PII’s 510
 §5c. Stable Convergence 512
 §5d. Mixing Convergence 518
 §5e. Application to Stationary Processes 519

Chapter IX. Convergence to a Semimartingale 521
1. Limits of Martingales 521
 §1a. The Bounded Case 522
 §1b. The Unbounded Case 524
2. Identification of the Limit 527
 §2a. Introductory Remarks 527
 §2b. Identification of the Limit: The Main Result 530
 §2c. Identification of the Limit Via Convergence
 of the Characteristics 533
 §2d. Application: Existence of Solutions to Some Martingale
 Problems .. 535
3. Limit Theorems for Semimartingales 540
 §3a. Tightness of the Sequence \((X_n) \) 541
 §3b. Limit Theorems: The Bounded Case 546
 §3c. Limit Theorems: The Locally Bounded Case 550
4. Applications ... 554
 §4a. Convergence of Diffusion Processes with Jumps 554
 §4b. Convergence of Step Markov Processes to Diffusions 557
 §4c. Empirical Distributions and Brownian Bridge 560
 §4d. Convergence to a Continuous Semimartingale:
 Necessary and Sufficient Conditions 561
5. Convergence of Stochastic Integrals 564
 §5a. Characteristics of Stochastic Integrals 564
 §5b. Statement of the Results 567
 §5c. The Proofs .. 570
6. Stability for Stochastic Differential Equation 575
 §6a. Auxiliary Results 576
 §6b. Stochastic Differential Equations 577
 §6c. Stability .. 578
Limit Theorems for Stochastic Processes
Jacod, J.; Shiryaev, A.N.
2003, XX, 664 p., Hardcover
ISBN: 978-3-540-43932-5