Contents

I. Threats to Plant Population Viability

1 Why Plant Population Viability Assessment?
M.W. SCHWARTZ and C.A. BRIGHAM

1.1 Introduction
1.1.1 Book Structure

1.2 Why Plants Differ

1.3 Life Histories of Plants

1.4 Conclusion: Conservation Challenges for Plants

References

2 Threats to Rare Plant Persistence
J.G.B. OOSTERMEIJER

2.1 Introduction

2.2 Delineating Different Types of Threats

2.2.1 Environmental Threats

2.2.1.1 Climate Change

2.2.1.2 Habitat Fragmentation and Degradation

2.2.2 Disturbed Biotic Interactions

2.2.2.1 Pollen Limitation

2.2.2.2 Dispersal Limitation

2.2.2.3 Interactions with Exotic Species

2.2.2.4 Climate Change

2.2.2.5 Grazing and Trampling

2.2.3 Genetic Threats

2.2.3.1 Drift and Inbreeding

2.2.3.2 Inbreeding Effects

2.2.3.3 Loss of S-alleles

2.2.3.4 Reduced Adaptability

3 Factors Affecting Persistence in Formerly Common and Historically Rare Plants

C.A. Brigham

3.1 Introduction
3.1.1 General Background
3.1.2 Selection of Factors
3.1.3 Types of Rarity in Plants
3.2 Reductions in Genetic Diversity
3.2.1 Is There a Positive Correlation Between Genetic Diversity and Population Size in Plants?
3.2.2 Do Rare Plant Species Show Reduced Genetic Diversity in Comparison to More Common Congeners?
3.2.3 Is There Evidence for a Positive Correlation Between Reduced Genetic Diversity and Reduced Fitness in Plants?
3.2.4 Do Historically Rare and Formerly Common Species Show Similar Patterns of Correlations Between Population Size and Genetic Diversity?
3.2.5 Implications for PVAs
3.3 Competition
3.3.1 Is There Evidence for Competition with Native Species as a Cause of Rarity in Plants?
3.3.2 What Is the Role of Exotic Species in Plant Declines?
3.3.3 Competition in Historically Rare and Formerly Common Species

| Competition in Historically Rare and Formerly Common Species | 84 |

3.3.4 Implications for PVA

| Implications for PVA | 85 |

3.4 Loss of Pollinators at Low Abundance

| Loss of Pollinators at Low Abundance | 86 |

3.4.1 Are Rare Plants in General Pollinator-Limited?

| Are Rare Plants in General Pollinator-Limited? | 86 |

3.4.2 How Might We Expect Plant-Pollinator Relationships to Differ for Historically Rare and Formerly Common Species?

| How Might We Expect Plant-Pollinator Relationships to Differ for Historically Rare and Formerly Common Species? | 88 |

3.4.3 Implications for PVA

| Implications for PVA | 89 |

3.5 Herbivory and Seed Predation

| Herbivory and Seed Predation | 90 |

3.5.1 Review of the Evidence for Effects of Herbivory and Seed Predation on Rare Plants

| Review of the Evidence for Effects of Herbivory and Seed Predation on Rare Plants | 90 |

3.5.2 Historically Rare vs. Formerly Common Species: Expectations

| Historically Rare vs. Formerly Common Species: Expectations | 91 |

3.5.3 Implications for PVA

| Implications for PVA | 94 |

3.6 Conclusions

| Conclusions | 95 |

3.6.1 Suggestions for Future Directions

| Suggestions for Future Directions | 96 |

3.6.2 Implications for PVA

| Implications for PVA | 97 |

References

| References | 98 |

4 The Relationship Between Plant-Pathogen and Plant-Herbivore Interactions and Plant Population Persistence in a Fragmented Landscape

| The Relationship Between Plant-Pathogen and Plant-Herbivore Interactions and Plant Population Persistence in a Fragmented Landscape | 105 |

N.J. Ouborg and A. Biere

4.1 Introduction

| Introduction | 105 |

4.2 Effects of Habitat Fragmentation on Species Interactions

| Effects of Habitat Fragmentation on Species Interactions | 106 |

4.3 The Interaction Between Plants and Diseases and Herbivores

| The Interaction Between Plants and Diseases and Herbivores | 107 |

4.4 Habitat Fragmentation and Disease Susceptibility

| Habitat Fragmentation and Disease Susceptibility | 109 |

4.4.1 Disease Incidence and Genetic Drift

| Disease Incidence and Genetic Drift | 110 |

4.4.2 Disease Incidence and Inbreeding

| Disease Incidence and Inbreeding | 111 |

4.4.3 Disease Incidence and Population Dynamics: Thresholds

| Disease Incidence and Population Dynamics: Thresholds | 114 |

4.4.4 Disease Incidence and Multitrophic Interactions

| Disease Incidence and Multitrophic Interactions | 116 |

4.5 Conclusions

| Conclusions | 118 |

References

| References | 119 |
5 The Origin and Extinction of Species
Through Hybridization
... 125
C.A. Buerkle, D.E. Wolf and L.H. Riesenberg

5.1 Introduction: Consequences of Hybridization 125
5.1.1 Maintenance of Stable Hybrid Zones 126
5.1.2 Extinction Through Hybridization with Congeners 128
5.1.3 Hybrid Speciation and Adaptive Trait Introgression ... 132
5.2 The Relative Frequency Of Extinction, Homoploid
Speciation and Other Consequences of Hybridization 136
5.2.1 Methods .. 136
5.2.2 Results .. 137
5.2.3 Discussion 138
5.3 Frequency of Outcomes: Overview 139
5.4 Species Conservation Among Hybridizing Taxa 143
5.4.1 Anthropogenic Disturbance and Hybridization 144
5.4.2 Conclusion: Implications for Population Viability
Analysis and Management 145
References ... 147

II. Modeling Approaches for Population Viability Analysis

6 Approaches to Modeling Population Viability In Plants:
An Overview 155
C.A. Brigham and D.M. Thomson

6.1 Introduction .. 155
6.2 Unstructured Models 157
6.2.1 The Diffusion Approximation 157
6.2.2 When to Use Unstructured Models 160
6.3 Stage-Structured Models 161
6.3.1 Developing a Matrix Model 163
6.3.2 Sensitivity and Elasticity Analysis 166
6.3.3 When to Use Stage-Structured Models 168
6.4 Spatially Structured Models 169
6.4.1 Metapopulation Models 170
6.4.2 Spatially Structured Matrix Models 173
6.4.3 When to Use Spatially Structured Models 174
6.5 Genetics in Population Viability Analysis 175
6.6 Future Directions 176
6.7 Conclusions 178
References ... 178
7 The Problems and Potential of Count-Based Population Viability Analyses

B.D. Elderd, P. Shahani, and D.F. Doak

7.1 Introduction
7.1.1 A Genealogy of Count-Based PVA
7.1.2 The Basics of Count-Based PVA
7.1.3 Problems and Criticisms of the DA Method of PVA
7.2 Methods
7.3 Results
7.3.1 Predictions of Population Growth
7.3.2 Predictions of Extinction Risk
7.3.3 Ranking Relative Risk
7.3.4 Effects of an Unseen Stage
7.4 Conclusion
References

8 Habitat Models for Population Viability Analysis

J. Elith and M.A. Burgman

8.1 Introduction
8.2 Methods for Building Habitat Models
8.2.1 Conceptual Models Based on Expert Opinion
8.2.2 Geographic Envelopes
8.2.3 Climate Envelopes
8.2.4 Multivariate Association Methods
8.2.5 Regression Analysis
8.2.6 Tree-Based Methods
8.2.7 Machine Learning Methods
8.3 Issues Affecting Modeling Success
8.3.1 Comparison of Methods
8.3.1.1 Predictive Performance
8.3.1.2 Understanding the Methods
8.3.1.3 Estimating Error
8.3.1.4 Model Interpretability
8.3.2 Modeling Data
8.3.2.1 Species Data
8.3.2.2 Predictor Variables
8.3.3 Links Between Occupation and Quality of Habitat
8.3.4 Habitat and Patches
8.4 Assessing the Reliability of a Habitat Model
III. Addressing Plant Life Histories in Population Viability Analysis

9 Assessing Population Viability in Long-Lived Plants 255
M.W. SCHWARTZ

9.1 Introduction 255
9.2 Strategies for Population Viability Analysis 256
9.2.1 Population Trend Assessment 258
9.2.2 Transition Matrix Modeling 260
9.2.2.1 Insufficient Sampling Interval 261
9.2.2.2 Inaccurate Transition Probabilities and Complex Transitions 263
9.2.2.3 Transition Matrix Element Elasticity 265
9.2.3 Reconstructing Performance from Population Size Structure 267
9.2.4 Predicting Community Dynamics 269
9.2.5 Sample Variance 270
9.3 Expressing Viability: Extinction Likelihood/Generation Time 271
9.4 Nonquantitative Assessments of Viability 271
9.4.1 Habitat Loss 274
9.4.2 Disturbance Regime 275
9.4.3 Habitat Degradation 277
9.4.4 Population Performance 277
9.4.5 Obtaining Expert Opinion 278
9.4.6 Estimating Habitat Area Requirements 278
9.5 Conclusions 279
References 281

10 Considering Interactions: Incorporating Biotic Interactions into Viability Assessment 285
M.A. MORALES, D.W. INOYEE, M.J. LEIGH, and G. LOWE

10.1 Introduction 285
10.2 What Kinds of Interactions Are Plants Involved in? 285
10.3 When Are Species Interactions Likely to Matter? 287
10.3.1 Community Effects 288
10.3.2 Density-Dependent Species Interactions

10.3.3 Critical Interactions and Feedback Dynamics

10.4 Strategies for Evaluating the Importance of Species Interactions

10.4.1 Evaluating the Importance of Species Interactions: Matrix Modeling Approaches

10.5 Modeling Species Interactions in PVAs

10.5.1 Genetic Consequences of Species Interactions

10.6 Conclusions

References

11 Modeling the Effects of Disturbance, Spatial Variation, and Environmental Heterogeneity on Population Viability of Plants

E.S. Menges and P.F. Quintana-Ascencio

11.1 Introduction

11.2 The Issue of Variance and the Problems with Averaging

11.3 Comparing Populations Subject to Disparate Disturbance Regimes or Environmental Conditions

11.4 Modeling Disturbance Explicitly with Megamatrices

11.5 Modeling Disturbance Cycles and Episodic Disturbances Explicitly

11.6 Spatially Explicit Demography and PV A

11.7 Conclusion: The Limitations and Uses of PV A

References

12 Projecting the Success of Plant Population Restoration with Viability Analysis

T. Bell, M. Bowles, and K. McEachern

12.1 Introduction

12.1.1 Developing PV A for Plants

12.1.2 PRVA Applications

12.1.3 Theoretical Framework

12.2 PRVA Case Studies

12.3 Pitcher's Thistle

12.3.1 Species Background

12.3.2 Restoration Viability Analysis
Population Viability in Plants
Conservation, Management, and Modeling of Rare Plants
Brigham, C.A.; Schwartz, M.W. (Eds.)
2003, XVII, 366 p., Hardcover
ISBN: 978-3-540-43909-7