I. Threats to Plant Population Viability

1 Why Plant Population Viability Assessment? .. 3
 M.W. SCHWARTZ and C.A. BRIGHAM

 1.1 Introduction .. 3
 1.1.1 Book Structure .. 4
 1.2 Why Plants Differ .. 6
 1.3 Life Histories of Plants ... 8
 1.4 Conclusion: Conservation Challenges for Plants 11
 References .. 13

2 Threats to Rare Plant Persistence ... 17
 J.G.B. OOSTERMEIJER

 2.1 Introduction .. 17
 2.2 Delineating Different Types of Threats ... 18
 2.2.1 Environmental Threats ... 19
 2.2.1.1 Climate Change ... 19
 2.2.1.2 Habitat Fragmentation and Degradation 22
 2.2.2 Disturbed Biotic Interactions ... 24
 2.2.2.1 Pollen Limitation ... 24
 2.2.2.2 Dispersal Limitation .. 24
 2.2.2.3 Interactions with Exotic Species 25
 2.2.2.4 Climate Change ... 26
 2.2.2.5 Grazing and Trampling .. 26
 2.2.2.6 Climate Change ... 26
 2.2.3 Genetic Threats .. 27
 2.2.3.1 Drift and Inbreeding .. 27
 2.2.3.2 Inbreeding Effects ... 28
 2.2.3.3 Loss of S-alleles ... 28
 2.2.3.4 Reduced Adaptability ... 29
3 Factors Affecting Persistence in Formerly Common and Historically Rare Plants

C.A. Brigham

3.1 Introduction ... 63
3.1.1 General Background .. 63
3.1.2 Selection of Factors ... 65
3.1.3 Types of Rarity in Plants 65
3.2 Reductions in Genetic Diversity 66
3.2.1 Is There a Positive Correlation Between Genetic Diversity and Population Size in Plants? 67
3.2.2 Do Rare Plant Species Show Reduced Genetic Diversity in Comparison to More Common Congeners? 71
3.2.3 Is There Evidence for a Positive Correlation Between Reduced Genetic Diversity and Reduced Fitness in Plants? 73
3.2.4 Do Historically Rare and Formerly Common Species Show Similar Patterns of Correlations Between Population Size and Genetic Diversity? 76
3.2.5 Implications for PVAs ... 78
3.3 Competition ... 79
3.3.1 Is There Evidence for Competition with Native Species as a Cause of Rarity in Plants? 80
3.3.2 What Is the Role of Exotic Species in Plant Declines? 83
3.3.3 Competition in Historically Rare and Formerly Common Species 84
3.3.4 Implications for PVA 85
3.4 Loss of Pollinators at Low Abundance .. 86
3.4.1 Are Rare Plants in General Pollinator-Limited? 86
3.4.2 How Might We Expect Plant-Pollinator Relationships to Differ for Historically Rare and Formerly Common Species? 88
3.4.3 Implications for PVA 89
3.5 Herbivory and Seed Predation ... 90
3.5.1 Review of the Evidence for Effects of Herbivory and Seed Predation on Rare Plants ... 90
3.5.2 Historically Rare vs. Formerly Common Species: Expectations 91
3.5.3 Implications for PVA 94
3.6 Conclusions .. 95
3.6.1 Suggestions for Future Directions .. 96
3.6.2 Implications for PVA 97
References ... 98

4 The Relationship Between Plant-Pathogen and Plant-Herbivore Interactions and Plant Population Persistence in a Fragmented Landscape . 105
N.J. Ouborg and A. Biere

4.1 Introduction .. 105
4.2 Effects of Habitat Fragmentation on Species Interactions 106
4.3 The Interaction Between Plants and Diseases and Herbivores ... 107
4.4 Habitat Fragmentation and Disease Susceptibility 109
4.4.1 Disease Incidence and Genetic Drift ... 110
4.4.2 Disease Incidence and Inbreeding ... 111
4.4.3 Disease Incidence and Population Dynamics: Thresholds 114
4.4.4 Disease Incidence and Multitrophic Interactions 116
4.5 Conclusions .. 118
References ... 119
5 The Origin and Extinction of Species
Through Hybridization 125
C.A. Buerkle, D.E. Wolf and L.H. Riesenberg

5.1 Introduction: Consequences of Hybridization 125
5.1.1 Maintenance of Stable Hybrid Zones 126
5.1.2 Extinction Through Hybridization with Congeners 128
5.1.3 Hybrid Speciation and Adaptive Trait Introgression ... 132
5.2 The Relative Frequency Of Extinction, Homoploid Speciation and Other Consequences of Hybridization ... 136
5.2.1 Methods ... 136
5.2.2 Results .. 137
5.2.3 Discussion 138
5.3 Frequency of Outcomes: Overview 139
5.4 Species Conservation Among Hybridizing Taxa 143
5.4.1 Anthropogenic Disturbance and Hybridization 144
5.4.2 Conclusion: Implications for Population Viability Analysis and Management 145
References ... 147

II. Modeling Approaches for Population Viability Analysis

6 Approaches to Modeling Population Viability In Plants:
An Overview ... 155
C.A. Brigham and D.M. Thomson

6.1 Introduction .. 155
6.2 Unstructured Models 157
6.2.1 The Diffusion Approximation 157
6.2.2 When to Use Unstructured Models 160
6.3 Stage-Structured Models 161
6.3.1 Developing a Matrix Model 163
6.3.2 Sensitivity and Elasticity Analysis 166
6.3.3 When to Use Stage-Structured Models 168
6.4 Spatially Structured Models 169
6.4.1 Metapopulation Models 170
6.4.2 Spatially Structured Matrix Models 173
6.4.3 When to Use Spatially Structured Models 174
6.5 Genetics in Population Viability Analysis 175
6.6 Future Directions 176
6.7 Conclusions 178
References ... 178
The Problems and Potential of Count-Based Population Viability Analyses

B.D. Elderd, P. Shahani, and D.F. Doak

Introduction

A Genealogy of Count-Based PVA

The Basics of Count-Based PVA

Problems and Criticisms of the DA Method of PVA

Methods

Results

Predictions of Population Growth

Predictions of Extinction Risk

Ranking Relative Risk

Effects of an Unseen Stage

Conclusion

References

Habitat Models for Population Viability Analysis

J. Elith and M.A. Burgman

Introduction

Methods for Building Habitat Models

Conceptual Models Based on Expert Opinion

Geographic Envelopes

Climate Envelopes

Multivariate Association Methods

Regression Analysis

Tree-Based Methods

Machine Learning Methods

Issues Affecting Modeling Success

Comparison of Methods

Predictive Performance

Understanding the Methods

Estimating Error

Model Interpretability

Modeling Data

Species Data

Predictor Variables

Links Between Occupation and Quality of Habitat

Habitat and Patches

Assessing the Reliability of a Habitat Model
III. Addressing Plant Life Histories in Population Viability Analysis

9 Assessing Population Viability in Long-Lived Plants 255
M.W. Schwartz

9.1 Introduction 255
9.2 Strategies for Population Viability Analysis 256
9.2.1 Population Trend Assessment 258
9.2.2 Transition Matrix Modeling 260
9.2.2.1 Insufficient Sampling Interval 261
9.2.2.2 Inaccurate Transition Probabilities and Complex Transitions 263
9.2.2.3 Transition Matrix Element Elasticity 265
9.2.3 Reconstructing Performance from Population Size Structure 267
9.2.4 Predicting Community Dynamics 269
9.2.5 Sample Variance 270
9.3 Expressing Viability: Extinction Likelihood/Generation Time 271
9.4 Nonquantitative Assessments of Viability 271
9.4.1 Habitat Loss 274
9.4.2 Disturbance Regime 275
9.4.3 Habitat Degradation 277
9.4.4 Population Performance 277
9.4.5 Obtaining Expert Opinion 278
9.4.6 Estimating Habitat Area Requirements 278
9.5 Conclusions 279
References 281

10 Considering Interactions: Incorporating Biotic Interactions into Viability Assessment 285
M.A. Morales, D.W. Inouye, M.J. Leigh, and G. Lowe

10.1 Introduction 285
10.2 What Kinds of Interactions Are Plants Involved in? 285
10.3 When Are Species Interactions Likely to Matter? 287
10.3.1 Community Effects 288
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3.2</td>
<td>Density-Dependent Species Interactions</td>
<td>290</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Critical Interactions and Feedback Dynamics</td>
<td>293</td>
</tr>
<tr>
<td>10.4</td>
<td>Strategies for Evaluating the Importance of Species Interactions</td>
<td>294</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Evaluating the Importance of Species Interactions: Matrix Modeling Approaches</td>
<td>295</td>
</tr>
<tr>
<td>10.5</td>
<td>Modeling Species Interactions in PVAs</td>
<td>297</td>
</tr>
<tr>
<td>10.5.1</td>
<td>Genetic Consequences of Species Interactions</td>
<td>294</td>
</tr>
<tr>
<td>10.6</td>
<td>Conclusions</td>
<td>301</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>301</td>
</tr>
</tbody>
</table>

11 Modeling the Effects of Disturbance, Spatial Variation, and Environmental Heterogeneity on Population Viability of Plants
E.S. Menges and P.F. Quintana-Ascencio

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>307</td>
</tr>
<tr>
<td>11.2</td>
<td>The Issue of Variance and the Problems with Averaging</td>
<td>309</td>
</tr>
<tr>
<td>11.3</td>
<td>Comparing Populations Subject to Disparate Disturbance Regimes or Environmental Conditions</td>
<td>310</td>
</tr>
<tr>
<td>11.4</td>
<td>Modeling Disturbance Explicitly with Megamatrices</td>
<td>314</td>
</tr>
<tr>
<td>11.5</td>
<td>Modeling Disturbance Cycles and Episodic Disturbances Explicitly</td>
<td>317</td>
</tr>
<tr>
<td>11.6</td>
<td>Spatially Explicit Demography and PVA</td>
<td>322</td>
</tr>
<tr>
<td>11.7</td>
<td>Conclusion: The Limitations and Uses of PVA</td>
<td>325</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>326</td>
</tr>
</tbody>
</table>

12 Projecting the Success of Plant Population Restoration with Viability Analysis
T. Bell, M. Bowles, and K. McEachern

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>333</td>
</tr>
<tr>
<td>12.1.1</td>
<td>Developing PVA for Plants</td>
<td>334</td>
</tr>
<tr>
<td>12.1.2</td>
<td>PRVA Applications</td>
<td>335</td>
</tr>
<tr>
<td>12.1.3</td>
<td>Theoretical Framework</td>
<td>336</td>
</tr>
<tr>
<td>12.2</td>
<td>PRVA Case Studies</td>
<td>337</td>
</tr>
<tr>
<td>12.3</td>
<td>Pitcher's Thistle</td>
<td>338</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Species Background</td>
<td>338</td>
</tr>
<tr>
<td>12.3.2</td>
<td>Restoration Viability Analysis</td>
<td>339</td>
</tr>
</tbody>
</table>
IV. Conclusions

13 Plant Population Viability: Where to from Here? 373
C.A. Brigham

13.1 Introduction ... 373
13.2 Threats to Population Viability 373
13.3 Quantifying the Limits of Applicability of PVA Models 374
13.4 PVAs and Relative Rankings ... 375
13.5 Increasing the Complexity of PVAs 375
13.6 Role of PVA in Plant Conservation and Management 375
13.7 Conclusions: Future of Plant Conservation and Population Viability 377

References .. 378

Subject Index ... 379
Population Viability in Plants
Conservation, Management, and Modeling of Rare Plants
Brigham, C.A.; Schwartz, M.W. (Eds.)
2003, XVII, 366 p., Hardcover
ISBN: 978-3-540-43909-7