I. Threats to Plant Population Viability

1 Why Plant Population Viability Assessment? 3
 M.W. SCHWARTZ and C.A. BRIGHAM

 1.1 Introduction 3
 1.1.1 Book Structure 4
 1.2 Why Plants Differ 6
 1.3 Life Histories of Plants 8
 1.4 Conclusion: Conservation Challenges for Plants 11
References 13

2 Threats to Rare Plant Persistence 17
 J.G.B. OOSTERMEIJER

 2.1 Introduction 17
 2.2 Delineating Different Types of Threats 18
 2.2.1 Environmental Threats 19
 2.2.1.1 Climate Change 19
 2.2.1.2 Habitat Fragmentation and Degradation 22
 2.2.1.3 Direct Destruction and Overexploitation of Populations 23
 2.2.2 Disturbed Biotic Interactions 24
 2.2.2.1 Pollen Limitation 24
 2.2.2.2 Dispersal Limitation 24
 2.2.2.3 Interactions with Exotic Species 25
 2.2.2.4 Climate Change 26
 2.2.2.5 Grazing and Trampling 26
 2.2.3 Genetic Threats 27
 2.2.3.1 Drift and Inbreeding 27
 2.2.3.2 Inbreeding Effects 28
 2.2.3.3 Loss of S-alleles 28
 2.2.3.4 Reduced Adaptability 29
3 Factors Affecting Persistence in Formerly Common and Historically Rare Plants 63
C.A. BRIGHAM

3.1 Introduction .. 63
3.1.1 General Background 63
3.1.2 Selection of Factors 65
3.1.3 Types of Rarity in Plants 65
3.2 Reductions in Genetic Diversity 66
3.2.1 Is There a Positive Correlation Between Genetic Diversity and Population Size in Plants? 67
3.2.2 Do Rare Plant Species Show Reduced Genetic Diversity in Comparison to More Common Congeners? . 71
3.2.3 Is There Evidence for a Positive Correlation Between Reduced Genetic Diversity and Reduced Fitness in Plants? . 73
3.2.4 Do Historically Rare and Formerly Common Species Show Similar Patterns of Correlations Between Population Size and Genetic Diversity? 76
3.2.5 Implications for PVAs 78
3.3 Competition .. 79
3.3.1 Is There Evidence for Competition with Native Species as a Cause of Rarity in Plants? 80
3.3.2 What Is the Role of Exotic Species in Plant Declines? 83

References .. 46
4 The Relationship Between Plant-Pathogen and Plant-Herbivore Interactions and Plant Population Persistence in a Fragmented Landscape

N.J. Ouborg and A. Biere

4.1 Introduction .. 105
4.2 Effects of Habitat Fragmentation on Species Interactions .. 106
4.3 The Interaction Between Plants and Diseases and Herbivores 107
4.4 Habitat Fragmentation and Disease Susceptibility ... 109
4.4.1 Disease Incidence and Genetic Drift ... 110
4.4.2 Disease Incidence and Inbreeding ... 111
4.4.3 Disease Incidence and Population Dynamics: Thresholds 114
4.4.4 Disease Incidence and Multitrophic Interactions .. 116
4.5 Conclusions ... 118
References .. 119
5 The Origin and Extinction of Species
Through Hybridization .. 125
C.A. Buerkle, D.E. Wolf and L.H. Riesenberg

5.1 Introduction: Consequences of Hybridization 125
5.1.1 Maintenance of Stable Hybrid Zones 126
5.1.2 Extinction Through Hybridization with Congeners 128
5.1.3 Hybrid Speciation and Adaptive Trait Introgression ... 132
5.2 The Relative Frequency Of Extinction, Homoploid
Speciation and Other Consequences of Hybridization 136
5.2.1 Methods .. 136
5.2.2 Results .. 137
5.2.3 Discussion .. 138
5.3 Frequency of Outcomes: Overview 139
5.4 Species Conservation Among Hybridizing Taxa 143
5.4.1 Anthropic Disturbance and Hybridization 144
5.4.2 Conclusion: Implications for Population Viability
Analysis and Management 145
References ... 147

II. Modeling Approaches for Population Viability Analysis

6 Approaches to Modeling Population Viability In Plants:
An Overview .. 155
C.A. Brigham and D.M. Thomson

6.1 Introduction .. 155
6.2 Unstructured Models .. 157
6.2.1 The Diffusion Approximation 157
6.2.2 When to Use Unstructured Models 160
6.3 Stage-Structured Models 161
6.3.1 Developing a Matrix Model 163
6.3.2 Sensitivity and Elasticity Analysis 166
6.3.3 When to Use Stage-Structured Models 168
6.4 Spatially Structured Models 169
6.4.1 Metapopulation Models 170
6.4.2 Spatially Structured Matrix Models 173
6.4.3 When to Use Spatially Structured Models 174
6.5 Genetics in Population Viability Analysis 175
6.6 Future Directions .. 176
6.7 Conclusions ... 178
References ... 178
7 The Problems and Potential of Count-Based Population Viability Analyses

B.D. Elderd, P. Shahani, and D.F. Doak

7.1 Introduction

7.1.1 A Genealogy of Count-Based PVA

7.1.2 The Basics of Count-Based PVA

7.1.3 Problems and Criticisms of the DA Method of PVA

7.2 Methods

7.3 Results

7.3.1 Predictions of Population Growth

7.3.2 Predictions of Extinction Risk

7.3.3 Ranking Relative Risk

7.3.4 Effects of an Unseen Stage

7.4 Conclusion

References

8 Habitat Models for Population Viability Analysis

J. Elith and M.A. Burgman

8.1 Introduction

8.2 Methods for Building Habitat Models

8.2.1 Conceptual Models Based on Expert Opinion

8.2.2 Geographic Envelopes

8.2.3 Climate Envelopes

8.2.4 Multivariate Association Methods

8.2.5 Regression Analysis

8.2.6 Tree-Based Methods

8.2.7 Machine Learning Methods

8.3 Issues Affecting Modeling Success

8.3.1 Comparison of Methods

8.3.1.1 Predictive Performance

8.3.1.2 Understanding the Methods

8.3.1.3 Estimating Error

8.3.1.4 Model Interpretability

8.3.2 Modeling Data

8.3.2.1 Species Data

8.3.2.2 Predictor Variables

8.3.3 Links Between Occupation and Quality of Habitat

8.3.4 Habitat and Patches

8.4 Assessing the Reliability of a Habitat Model
III. Addressing Plant Life Histories in Population Viability Analysis

9 Assessing Population Viability in Long-Lived Plants

M.W. Schwartz

9.1 Introduction

9.2 Strategies for Population Viability Analysis

9.2.1 Population Trend Assessment

9.2.2 Transition Matrix Modeling

9.2.2.1 Insufficient Sampling Interval

9.2.2.2 Inaccurate Transition Probabilities and Complex Transitions

9.2.2.3 Transition Matrix Element Elasticity

9.2.3 Reconstructing Performance from Population Size Structure

9.2.4 Predicting Community Dynamics

9.2.5 Sample Variance

9.3 Expressing Viability: Extinction Likelihood/Generation Time

9.4 Nonquantitative Assessments of Viability

9.4.1 Habitat Loss

9.4.2 Disturbance Regime

9.4.3 Habitat Degradation

9.4.4 Population Performance

9.4.5 Obtaining Expert Opinion

9.4.6 Estimating Habitat Area Requirements

9.5 Conclusions

References

10 Considering Interactions: Incorporating Biotic Interactions into Viability Assessment

M.A. Morales, D.W. Inouye, M.J. Leigh, and G. Lowe

10.1 Introduction

10.2 What Kinds of Interactions Are Plants Involved in?

10.3 When Are Species Interactions Likely to Matter?

10.3.1 Community Effects
10.3.2 Density-Dependent Species Interactions .. 290
10.3.3 Critical Interactions and Feedback Dynamics 293
10.4 Strategies for Evaluating the Importance of Species Interactions 294
10.4.1 Evaluating the Importance of Species Interactions: Matrix Modeling Approaches .. 295
10.5 Modeling Species Interactions in PVAs ... 297
10.5.1 Genetic Consequences of Species Interactions 294
10.6 Conclusions ... 301
References ... 301

11 Modeling the Effects of Disturbance, Spatial Variation, and Environmental Heterogeneity on Population Viability of Plants ... 307
E.S. Menges and P.F. Quintana-Ascencio

11.1 Introduction .. 307
11.2 The Issue of Variance and the Problems with Averaging 309
11.3 Comparing Populations Subject to Disparate Disturbance Regimes or Environmental Conditions 310
11.4 Modeling Disturbance Explicitly with Megamatrices 314
11.5 Modeling Disturbance Cycles and Episodic Disturbances Explicitly 317
11.6 Spatially Explicit Demography and PVA .. 322
11.7 Conclusion: The Limitations and Uses of PVA 325
References ... 326

12 Projecting the Success of Plant Population Restoration with Viability Analysis ... 333
T. Bell, M. Bowles, and K. McEachern

12.1 Introduction .. 333
12.1.1 Developing PVA for Plants ... 334
12.1.2 PRVA Applications .. 335
12.1.3 Theoretical Framework .. 336
12.2 PRVA Case Studies ... 337
12.3 Pitcher’s Thistle ... 338
12.3.1 Species Background .. 338
12.3.2 Restoration Viability Analysis ... 339
Population Viability in Plants
Conservation, Management, and Modeling of Rare Plants
Brigham, C.A.; Schwartz, M.W. (Eds.)
2003, XVII, 366 p., Hardcover
ISBN: 978-3-540-43909-7