Contents

I. Threats to Plant Population Viability

1 Why Plant Population Viability Assessment? 3
M.W. SchwartZ and C.A. Brigham

1.1 Introduction 3
1.1.1 Book Structure 4
1.2 Why Plants Differ 6
1.3 Life Histories of Plants 8
1.4 Conclusion: Conservation Challenges for Plants 11
References 13

2 Threats to Rare Plant Persistence 17
J.G.B. Oostermeijer

2.1 Introduction 17
2.2 Delineating Different Types of Threats 18
2.2.1 Environmental Threats 19
2.2.1.1 Climate Change 19
2.2.1.2 Habitat Fragmentation and Degradation 22
2.2.2 Disturbed Biotic Interactions 24
2.2.2.1 Pollen Limitation 24
2.2.2.2 Dispersal Limitation 24
2.2.2.3 Interactions with Exotic Species 25
2.2.2.4 Climate Change 26
2.2.2.5 Grazing and Trampling 26
2.2.3 Genetic Threats 27
2.2.3.1 Drift and Inbreeding 27
2.2.3.2 Inbreeding Effects 28
2.2.3.3 Loss of S-alleles 28
2.2.3.4 Reduced Adaptability 29
3 Factors Affecting Persistence in Formerly Common and Historically Rare Plants

C.A. Brigham

3.1 Introduction

3.1.1 General Background

3.1.2 Selection of Factors

3.1.3 Types of Rarity in Plants

3.2 Reductions in Genetic Diversity

3.2.1 Is There a Positive Correlation Between Genetic Diversity and Population Size in Plants?

3.2.2 Do Rare Plant Species Show Reduced Genetic Diversity in Comparison to More Common Congeners?

3.2.3 Is There Evidence for a Positive Correlation Between Reduced Genetic Diversity and Reduced Fitness in Plants?

3.2.4 Do Historically Rare and Formerly Common Species Show Similar Patterns of Correlations Between Population Size and Genetic Diversity?

3.2.5 Implications for PVAs

3.3 Competition

3.3.1 Is There Evidence for Competition with Native Species as a Cause of Rarity in Plants?

3.3.2 What Is the Role of Exotic Species in Plant Declines?
5 The Origin and Extinction of Species
Through Hybridization
C.A. Bürekke, D.E. Wolf and L.H. Riesenberg

5.1 Introduction: Consequences of Hybridization
5.1.1 Maintenance of Stable Hybrid Zones
5.1.2 Extinction Through Hybridization with Congeners
5.1.3 Hybrid Speciation and Adaptive Trait Introgression
5.2 The Relative Frequency Of Extinction, Homoploid Speciation and Other Consequences of Hybridization
5.2.1 Methods
5.2.2 Results
5.2.3 Discussion
5.3 Frequency of Outcomes: Overview
5.4 Species Conservation Among Hybridizing Taxa
5.4.1 Anthropogenic Disturbance and Hybridization
5.4.2 Conclusion: Implications for Population Viability Analysis and Management
References

II. Modeling Approaches for Population Viability Analysis

6 Approaches to Modeling Population Viability In Plants:
An Overview
C.A. Brigham and D.M. Thomson

6.1 Introduction
6.2 Unstructured Models
6.2.1 The Diffusion Approximation
6.2.2 When to Use Unstructured Models
6.3 Stage-Structured Models
6.3.1 Developing a Matrix Model
6.3.2 Sensitivity and Elasticity Analysis
6.3.3 When to Use Stage-Structured Models
6.4 Spatially Structured Models
6.4.1 Metapopulation Models
6.4.2 Spatially Structured Matrix Models
6.4.3 When to Use Spatially Structured Models
6.5 Genetics in Population Viability Analysis
6.6 Future Directions
6.7 Conclusions
References
7 The Problems and Potential of Count-Based Population Viability Analyses

B.D. Elderd, P. Shahani, and D.F. Doak

7.1 Introduction

7.1.1 A Genealogy of Count-Based PVA

7.1.2 The Basics of Count-Based PVA

7.1.3 Problems and Criticisms of the DA Method of PVA

7.2 Methods

7.3 Results

7.3.1 Predictions of Population Growth

7.3.2 Predictions of Extinction Risk

7.3.3 Ranking Relative Risk

7.3.4 Effects of an Unseen Stage

7.4 Conclusion

References

8 Habitat Models for Population Viability Analysis

J. Elith and M.A. Burgman

8.1 Introduction

8.2 Methods for Building Habitat Models

8.2.1 Conceptual Models Based on Expert Opinion

8.2.2 Geographic Envelopes

8.2.3 Climate Envelopes

8.2.4 Multivariate Association Methods

8.2.5 Regression Analysis

8.2.6 Tree-Based Methods

8.2.7 Machine Learning Methods

8.3 Issues Affecting Modeling Success

8.3.1 Comparison of Methods

8.3.1.1 Predictive Performance

8.3.1.2 Understanding the Methods

8.3.1.3 Estimating Error

8.3.1.4 Model Interpretability

8.3.2 Modeling Data

8.3.2.1 Species Data

8.3.2.2 Predictor Variables

8.3.3 Links Between Occupation and Quality of Habitat

8.3.4 Habitat and Patches

8.4 Assessing the Reliability of a Habitat Model
III. Addressing Plant Life Histories in Population Viability Analysis

9 Assessing Population Viability in Long-Lived Plants 255
M.W. Schwartz

9.1 Introduction 255
9.2 Strategies for Population Viability Analysis 256
9.2.1 Population Trend Assessment 258
9.2.2 Transition Matrix Modeling 260
9.2.2.1 Insufficient Sampling Interval 261
9.2.2.2 Inaccurate Transition Probabilities and Complex Transitions 263
9.2.2.3 Transition Matrix Element Elasticity 265
9.2.3 Reconstructing Performance from Population Size Structure 267
9.2.4 Predicting Community Dynamics 269
9.2.5 Sample Variance 270
9.3 Expressing Viability: Extinction Likelihood/Generation Time 271
9.4 Nonquantitative Assessments of Viability 271
9.4.1 Habitat Loss 274
9.4.2 Disturbance Regime 275
9.4.3 Habitat Degradation 277
9.4.4 Population Performance 277
9.4.5 Obtaining Expert Opinion 278
9.4.6 Estimating Habitat Area Requirements 278
9.5 Conclusions 279
References 281

10 Considering Interactions: Incorporating Biotic Interactions into Viability Assessment 285
M.A. Morales, D.W. Inouye, M.J. Leigh, and G. Lowe

10.1 Introduction 285
10.2 What Kinds of Interactions Are Plants Involved in? 285
10.3 When Are Species Interactions Likely to Matter? 287
10.3.1 Community Effects 288
10.3.2 Density-Dependent Species Interactions
10.3.3 Critical Interactions and Feedback Dynamics
10.4 Strategies for Evaluating the Importance of Species Interactions
10.4.1 Evaluating the Importance of Species Interactions: Matrix Modeling Approaches
10.5 Modeling Species Interactions in PVAs
10.5.1 Genetic Consequences of Species Interactions
10.6 Conclusions

References

11 Modeling the Effects of Disturbance, Spatial Variation, and Environmental Heterogeneity on Population Viability of Plants
E.S. Menges and P.F. Quintana-Ascencio

11.1 Introduction
11.2 The Issue of Variance and the Problems with Averaging
11.3 Comparing Populations Subject to Disparate Disturbance Regimes or Environmental Conditions
11.4 Modeling Disturbance Explicitly with Megamatrices
11.5 Modeling Disturbance Cycles and Episodic Disturbances Explicitly
11.6 Spatially Explicit Demography and PVA
11.7 Conclusion: The Limitations and Uses of PVA

References

12 Projecting the Success of Plant Population Restoration with Viability Analysis
T. Bell, M. Bowles, and K. McEachern

12.1 Introduction
12.1.1 Developing PVA for Plants
12.1.2 PRVA Applications
12.1.3 Theoretical Framework
12.2 PRVA Case Studies
12.3 Pitcher’s Thistle
12.3.1 Species Background
12.3.2 Restoration Viability Analysis

References
IV. Conclusions

13 Plant Population Viability: Where to from Here? 373
C.A. Brigham

13.1 Introduction 373
13.2 Threats to Population Viability 373
13.3 Quantifying the Limits of Applicability of PVA Models 374
13.4 PVAs and Relative Rankings 375
13.5 Increasing the Complexity of PVAs 375
13.6 Role of PVA in Plant Conservation and Management 375
13.7 Conclusions: Future of Plant Conservation and Population Viability 377

References 378

Subject Index 379
Population Viability in Plants
Conservation, Management, and Modeling of Rare Plants
Brigham, C.A.; Schwartz, M.W. (Eds.)
2003, XVII, 366 p., Hardcover
ISBN: 978-3-540-43909-7