Contents

1. **Introduction** .. 1

2. **Acoustic Spectroscopy of Ideal Solutions** 7
 2.1 Density .. 8
 2.2 Viscosity ... 8
 2.3 Ultrasound Velocity, Compressibility, and Heat Capacity ... 12
 2.4 Ultrasonic Absorption 14

3. **Phase-Separating Solutions** 23
 3.1 Hydrogen Bonds in Solutions
 with Lower Phase-Separation Critical Point 23
 3.2 Phase Diagrams of Phase-Separating Solutions.
 Order Parameter .. 25
 3.3 Phase Diagrams of Binary Solutions with One Critical Point . 27
 3.4 Binary and Ternary Solutions
 with Closed Phase-Separation Region 27

4. **Dynamics of States Close to Critical** 37
 4.1 Low Frequency Acoustic Spectroscopy
 of Weakly Absorbing Liquids 37
 4.2 Acoustic Spectroscopy of Critical Solutions
 with Low Sound Absorption 39
 4.3 Acoustic Perturbation and Correlation Radius
 of Fluctuations in the Vicinity of a Critical Point 43
 4.4 Chemical Reactions in Near-Critical States 45
 4.5 Kinetics of Mono- and Bimolecular Reactions
 Close to a Phase-Separation Critical Point 46

5. **Physics of Solutions with Double Critical Point** 53
 5.1 Theory of Solutions with Double Critical Point 54
 5.2 Rayleigh Scattering of Light 55
 5.3 Dynamics of Near-Critical States of Solutions with a DCP ... 62
 5.4 Shear Viscosity ... 63
 5.5 Sound Propagation 67
6. Micellization as a Phase Transition
- 6.1 Conceptual Experiments 71
- 6.2 Electronic Structure of Hydrocarbon Chains of Molecules .. 75
- 6.3 Fluctuon Model of Micellization 77
- 6.4 Green Function Method 80
- 6.5 Huckle’s Method of Molecular Orbitals 81
- 6.6 Critical Micellization Concentration 84
- 6.7 Micellization as a Phase Transition of Finite Type 88
- 6.8 Phase Transitions at Micellization in Solutions of Ionic Molecules .. 90
- 6.9 Kinetics of Micellar and Pre-micellar Associations 93
- 6.10 Micellization Under Intensification of Molecular Mass Transfer .. 101
- 6.11 Micellization in the Electric Field of Charged Admixtures 105

7. Fluctuation Mechanism of Forced Spinodal Decomposition
- 7.1 Spinodal Decomposition as a Model for Microemulsion Formation ... 113
- 7.2 Non-equilibrium States in Phase-Separating Binary Liquids and External Perturbations 119
 - 7.2.1 Variable Electric Field 121
 - 7.2.2 Ultrasound .. 122
 - 7.2.3 Thermal Action 122
 - 7.2.4 Optothermal Influence 123
 - 7.2.5 Noise Field ... 123
 - 7.2.6 Turbulence .. 124
 - 7.2.7 Shear Flow .. 124
 - 7.2.8 Centrifugal Forces 125
 - 7.2.9 Stirring ... 126
- 7.3 External Perturbation and Spinodal Decomposition 128
 - 7.3.1 Heating of a System Without Stirring 129
 - 7.3.2 Heating of a System by Stirring 131
- 7.4 Statistical Account of an External Stirring Field 133

8. Weak Stirring and Absolute Instability Phenomena
- 8.1 Singularity in the Heat Capacity in Forced Spinodal Decomposition .. 139
- 8.2 Extending the Region of Absolute Instability 142
- 8.3 Initial Stage Kinetics of Forced Spinodal Decomposition 145

9. Microheterophase Relaxation State
- 9.1 Relaxation State Near the Boundary of Absolute Instability Under Weak Perturbation 147
9.2 Surface Tension Energy and Heat Absorption Effect 150
9.3 Thermal Relaxation Effects in the Cellular Structure 152

10. Transition from Emulsion to Microemulsion 155
 10.1 Microemulsion Structure 155
 10.2 Polychronal Relaxation Processes and Dispersion on the Interface 158
 10.3 Stable Microheterophase State on the Interface of Weakly Dissolved Liquids 161
 10.4 Conclusion ... 166

References .. 169
Phase Separation in Soft Matter Physics
Micellar Solutions, Microemulsions, Critical Phenomena
Khabibullaev, P.K.; Saidov, A.
2003, IX, 186 p., Hardcover
ISBN: 978-3-540-43890-8