Preface

The theory of chaos invades a large part of modern physics (celestial mechanics, fluid mechanics, particle accelerators, solid mechanics, etc.), together with other branches of knowledge (biology, ecology, economics, etc.). In particular, important results have been obtained in astronomy, especially in the study of gravitational systems.

In this domain, one kind of chaos is due to interactions between several resonances, which are at the origin of the weak chaos detected in our Solar System, particularly for the inner planets and, for example, in the attitude variations of Mars; let us recall that our Earth, thanks to the influence of the Moon, does not suffer attitude variations (which would be catastrophic for the stability of the climate) as strong as the latter planet. Theoretically speaking, the KAM theorem establishes the persistence of invariant tori in weakly perturbed Hamiltonian systems; besides, the Nekhorochev theorem allows the confinement over very long times, under some constraints, of weakly chaotic orbits.

But another kind of chaos, completely independent from interactions between resonances, is due to close encounters between celestial bodies, and is responsible for, for example, rapid transfer of “killing” asteroids which cross the orbits of telluric planets and can hurt them (let us recall, for example, the Cretaceous-Tertiary event); this can be the cause of ejection of comets and some asteroids away from the Solar System, too. Moreover, we should remind ourselves of the use of these close encounters by space missions, during which energy is given to spacecrafts through “rebounds” on planets (e.g. for the Cassini mission). In the equations of motion, denominators equal to the square of mutual distances between the bodies become, during such close encounters, very small and induce singularities; one of the solutions found for “rubbing out” these singularities during the integration is called regularization, which uses transformations on space and time. More recently, Opik’s works have allowed modeling of this close-encounter-induced chaos, and have been applied to the study of meteor streams and to chaotic diffusion of particles in planetary rings. These were the topics lectured on during the Arc 2000 School in 2000 (organized together with our colleague Patrick Michel, also from Nice), and which consequently constitute the main focus of this book.

The early chapters introduce the mathematical methods used in the theory of singularities in gravitational systems (e.g. regularization).
The second part of the book develops the modelization techniques, in particular the elaboration of “mappings” in which the basic ingredient consists of introducing delta functions to represent close encounters as shocks. Finally, the concluding chapters present the state of the art about the study of the diffusion of comets, wandering asteroids, meteors and planetary ring particles. Note that such studies are particularly relevant today, as the advances in modern observational instrumentation (LINEAR, Spacewatch, etc.) have lead to an enormous increase in the frequency of discovery of minor bodies in the Solar System.

General References

Nice, February 2002
Daniel Benest
Claude Froeschlé
List of Contributors

Benest, Daniel
O.C.A. Observatoire de Nice
B.P. 4229
F-06304 Nice Cedex 4, France
benest@obs-nice.fr

Celletti, Alessandra
Dipartimento di Matematica,
Università di Roma “Tor Vergata”
Via della Ricerca Scientifica 1
I-00133 Roma, Italy
celletti@mat.uniroma2.it

Della Penna, Maria Gabriella
O.C.A. Observatoire de Nice
B.P. 4229
F-06304 Nice Cedex 4, France
now at
Via Istonia n.47
I-66051 Cupello (ch), Italy
mgdellapenna@libero.it

Elskens, Yves
Equipe turbulence plasma,
Laboratoire de physique des interactions ioniques et moléculaires
case 321, Campus Saint-Jérôme
F-13397 Marseille Cedex 20, France
elskens@newsup.univ-mrs.fr

Falcolini, Corrado
Dipartimento di Matematica,
Università di Roma “Tor Vergata”
Via della Ricerca Scientifica 1
I-00133 Roma, Italy
falcolin@mat.uniroma2.it

Froeschlé, Claude
O.C.A. Observatoire de Nice
B.P. 4229
F-06304 Nice Cedex 4, France
claude@obs-nice.fr

Gronchi, Giovanni-Federico
Dipartimento di Matematica,
Università di Pisa
Via Buonarroti 2
I-56127 Pisa, Italy
gronchi@newton.dm.unipi.it

Petit, Jean-Marc
O.C.A. Observatoire de Nice
B.P. 4229
F-06304 Nice Cedex 4, France
now at
Observatoire de Besançon
41 bis Avenue de l’Observatoire
F-25010 Besançon, France
petit@obs-besancon.fr

Valsecchi, Giovanni
Istituto di Astrofisica Spaziale,
Area di Ricerca del C.N.R.
via Fosso del Cavaliere 100
I-00133 Roma, Italy
giovanni@ias.rm.cnr.it

Waldvogel, Jörg
Applied Mathematics,
ETH
CH-8092 Zurich, Switzerland
waldvoge@math.ethz.ch
Singularity in Gravitational Systems
Applications to Chaotic Transport in the Solar System
Benest, D.; Froeschle, C. (Eds.)
2002, XI, 216 p., Hardcover
ISBN: 978-3-540-43765-9