Contents

1 **Introduction** .. 1
1.1 Complex Fluids and Polymers 2
 1.1.1 Complex Systems 2
 1.1.2 Complex Fluids 3
 1.1.3 Mesoscopic Structures in Complex Fluids 7
1.2 Polymers: A Typical Example of Complex Fluids 8
 1.2.1 Molecular Structure of Polymers 8
 1.2.2 Mesoscopic and Macroscopic Properties of Polymers .. 10
1.3 Modeling the Physical Phenomena of Polymers 11
 1.3.1 Modeling Mesoscopic Structures 11
 1.3.2 Static Properties 12
 1.3.3 Dynamic Properties 14
 1.3.4 Physical Properties and Gaussian Chain Statistics .. 14

2 **Gaussian Chain Model and Statistics of Polymers** 17
2.1 A Simple Model of a Polymer Chain: The Lattice Model 17
 2.1.1 Definition of the Lattice Model of Polymers 17
 2.1.2 Ideal Chain Statistics of Lattice Models 25
2.2 Bead–Spring Model of Polymer Chain
 and Gaussian Chain Statistics 34
 2.2.1 Coarse-Graining Procedure and Bead–Spring Model .. 34
2.3 Statistical Mechanical Theory of Equilibrium Conformations
 of a Gaussian Chain 37
 2.3.1 Ideal Chain Statistics 37
 2.3.2 Correlation Functions and Scattering Functions
 of an Ideal Chain 43
 2.3.3 Statistical Mechanics of Chains with Interactions
 and Approximate Theories 48
 2.3.4 Statistical Properties of Many-Chain Systems 54
2.4 Dynamical Models of a Polymer Chain
 Based on a Molecular Description 62
 2.4.1 Formulation of Brownian Motion 62
 2.4.2 Rouse Model of a Single Polymer Chain in a Solvent .. 66
 2.4.3 Hydrodynamic Effects in Dilute Polymer Solutions ... 73
2.5 Justification of the Gaussian Chain Model
 from a Microscopic Point of View 80
2.5.1 Full Atomistic Model of Polymer Chains 80
2.5.2 United Atom Model 81
2.6 Statistical Theories and Experiments
 on Semi-Flexible Chains 84
2.6.1 Worm-Like Chain Model 84
2.6.2 Statistical Properties of a Stretched Worm-Like Chain 86
2.6.3 Experiments on Worm-Like Chains Using Biopolymers 90
2.7 Molecular Simulations of Polymer Dynamics 95
2.7.1 Molecular Simulation Methods 95
2.7.2 Models of Interaction Potentials
 for Coarse-Grained Chains 96
2.7.3 Examples of Molecular Simulations 96
Exercises .. 99

3 Mesoscopic Structures and Self-Consistent Field Theory .. 101
3.1 Mesoscopic Phenomena in Polymer Systems 101
3.2 Formulation and Simple Examples
 of the Self-Consistent Field Theory of Polymers 103
3.2.1 Mean Field Approximation and Self-Consistent Field . 105
3.2.2 Path Integral Formalism for Polymers 106
3.2.3 Classical Approximation
 for Self-Consistent Field Theory 111
3.3 Numerical Methods
 for the Self-Consistent Field Theory of Polymers 121
3.3.1 Functional Derivatives
 and Functional Integrals 122
3.3.2 General Expression for the Free Energy 126
3.3.3 Numerical Solutions
 of Self-Consistent Field Equations 134
3.3.4 Examples of Numerical Simulations
 Using Self-Consistent Field Theory 142
Exercises .. 151

4 Ginzburg–Landau Theory 153
4.1 Formulation of the Ginzburg–Landau Theory 153
4.1.1 Ginzburg–Landau Model 153
4.1.2 Expansion of the Free Energy 159
4.1.3 Evaluation of Expansion Coefficients
 Using the Random Phase Approximation 162
4.2 Applications of the Ginzburg–Landau Theory 172
4.2.1 Phase Diagram of Block Copolymer Melts 172
4.2.2 Extensions to Dynamical Processes 174
Exercises .. 177
5 Macroscopic Viscoelastic Theory of Polymers 179
 5.1 Viscoelastic Properties of Polymeric Liquids 179
 5.1.1 Polymers and Viscoelasticity 179
 5.1.2 Hydrodynamic Descriptions of Viscoelasticity 186
 5.2 Reptation Theory for Linear Polymers 190
 5.2.1 Concept of Reptation Theory 190
 5.2.2 Stress Relaxation Function 192
 5.3 Extensions of Reptation Theory and Nonlinear Viscoelasticity 201
 5.3.1 Contour Length Fluctuations 203
 5.3.2 Chain Retraction 205
 5.3.3 Constraint Release 206
 5.3.4 Contribution to Viscoelasticity from Phase-Separated Domains 208
Exercises .. 210

References .. 211

Index .. 213
Statistical Physics of Polymers
An Introduction
Kawakatsu, T.
2004, XI, 216 p., Hardcover
ISBN: 978-3-540-43440-5