The Cargèse Summer School “Sound–flow interactions” was held in the Institut d’Etudes Scientifiques de Cargèse in Corsica, France from 19th June to 1st July, 2000.

The understanding of sound and flow interactions has made some remarkable progress since the pioneering works of the Russian and British schools, in the 1950s. In addition, the growing availability during the past 10 years of sophisticated computer/electronics/materials techniques allows for the development of a growing number of applications as well as the possibility of addressing new fundamental problems. The coupling between acoustic waves and flow motion is basically nonlinear, so that the sound propagation and generation is modified by the flow and the flow can also be modified by the sound. As a result, this problem is investigated in many different scientific communities, such as applied mathematics, acoustics and fluid mechanics, among others. In our opinion, the time had come to try to gather the researchers in the different communities together in a tutorial environment. So, this school brought together worldwide specialists in order to present various aspects of sound–flow interactions, and share expertise and methodologies so as to promote cross-fertilisation.

The basic knowledge in the area is introduced by A. Hirschberg and C. Schram. He presents the aeroacoustics of internal flow in a very lively way with a lot of illustration devices. He introduces aeroacoustic analogies and applications like musical instruments, the Rijke tube, speech production etc. M.S. Howe introduces the theory of vortex sound in a very didactic way. From Lighthill’s acoustic analogy, he shows how vorticity and entropy fluctuations can be seen as sources of sound. Then, using the compact Green’s functions, he shows how to compute the vortex sound. As an example of the method presented, he applies this theory to pressure transients generated by high-speed trains. F. Lund gives the basic equations of sound–flow interactions. Then he introduces very clearly the scattering of sound because of vorticity and gives the most recent results on ultrasound propagation through a disordered flow. V. Ostashev presents geometrical acoustics in moving media and the important practical problem of sound propagation in turbulence (atmosphere, ocean). A. Fabrikant examines the plasma–hydrodynamics analogies including the resonant wave-flow interaction in shear flows, waves of negative
VI Preface

energy and over-reflection and acoustic oscillators in fluid flows. P. J. Morrison describes the dynamics of the continuous spectrum which occurs in shear flow. The results are interpreted in the context of infinite dimensional Hamiltonian systems theory. G. Chagelishvili presents new linear mechanisms of acoustic wave generation in smooth shear flows using a non-modal study.

N. Peake presents fluid–structure interactions in the presence of mean flows, including the problems of instability and causality. Finally, W. Lauterborn presents nonlinear acoustics with applications to sonoluminescence and to acoustic chaos.

In this Cargèse Summer School, 54 students from 12 nations, and 11 lecturers from 7 nations participated.

Acknowledgements. The Summer School and this publication would not have been possible without:

- financial support from the European Union, the Centre National de la Recherche Scientifique, the Ministère des Affaires Étrangères, the Ministère de l’Education Nationale, de la Recherche et de la Technologie and the Groupement de Recherche “Turbulence”;
- the guidance of Elisabeth Dubois–Violette, director of the Institut d’Études Scientifiques de Cargèse;
- the help of Chantal Ariano, Nathalie Bedjai, Brigitte Cassegrain, Pierre-Eric Grossi and the whole team in preparing and hosting of this school.

Finally, we wish to thank the lecturers for giving so much time in preparing the lectures and writing them up, as well as making themselves available for discussions during the school.

Le Mans, Paris, Lyon
September 2001

Yves Aurégan\(^1\),
Agnès Maurel\(^2\),
Vincent Pagneux\(^1\),
Jean-François Pinton\(^3\).

\(^1\) Laboratoire d’Acoustique de l’Université du Maine, UMR CNRS 6613, Av. O Messiaen, 72085 Le Mans Cedex 9, France
\(^2\) Laboratoire Ondes et Acoustique, UMR CNRS 7587, ESPCI, 10 rue Vauquelin, 75005 Paris, France
\(^3\) Laboratoire de Physique, UMR CNRS 1325, Ecole Normale Supérieure de Lyon, 46 allée d’Italie, 69007 Lyon, France
Some of the lecturers of the Cargèse School, from left to right: M.S. Howe, A. Hirschberg, P. Morrison, W. Lauterborn, V. Ostashev, A. Fabrikant, N. Peake, T. Colonius (Photo C. Schram)

Some of the participants of the Cargèse School (Photo C. Schram)
George D. Chagelishvili
Centre for Plasma Astrophysics,
Abastumani Astrophysical
Observatory, Ave. A. Kazbegi 2a,
380060 Tbilisi, Georgia
and
Space Research Institute,
Str. Profsoyuznaya 84/32,
117810 Moscow, Russia
georgech123@yahoo.com

Anatoly Fabrikant
KLA-Tencor, One Technology Dr.,
Milpitas, CA 95035, USA
fabr3@home.com

Avraham Hirschberg
Eindhoven University of Technology,
Dept. of App. Physics,
J.M. Burgerscentrum, Postbus 513,
5600 MB Eindhoven,
The Netherlands
A.Hirschberg@tue.nl

Michael S. Howe
Boston University,
College of Engineering, 110 Cum-
mington Street, Boston, MA 02215,
USA
mshove@bu.edu

Werner Lauterborn
Georg-August-Universität
Göttingen,
Drittes Physikalisches
Institut, Buergerstr. 42-44,
37073 Göttingen, Germany
W.Lauterborn@
dpi.physik.uni-goettingen.de

Fernando Lund
Centro para la Investigación
Interdisciplinaria Avanzada en
Ciencia
de los Materiales
and
Departamento de Física, Facultad
de Ciencias Físicas y Matemáticas,
Universidad de Chile,
Casilla 487-3, Santiago, Chile
flund@dirac.dfi.uchile.cl

Philip J. Morrison
Physics Department C1600,
University of Texas at Austin,
Austin, TX 78712, USA

Vladimir E. Ostashev
NOAA, Environmental Technology
Laboratory, 325 Broadway, Boulder,
CO 80305
and
Department of Physics, New Mexico
State University, Las Cruces, NM,
USA
Vladimir.Ostashev@noaa.gov

Nigel Peake
DAMTP, University of Cambridge,
Silver St., Cambridge CB3 9EW,
UK
N.Peake@damtp.cam.ac.uk
List of Contributors

Christophe Schram
von Karman Institute for Fluid Dynamics, Environmental and Applied Fluid Dynamics Dept.,
72 chaussée de Waterloo, 1640 Rhode-Saint-Genèse, Belgium
schram@vki.ac.be
Sound-Flow Interactions
Auregan, Y.; Maurel, A.; Pagneux, V.; Pinton, J.-F. (Eds.)
2002, XVI, 286 p., Hardcover
ISBN: 978-3-540-43332-3