1. Why Manganites Are Interesting ... 1
 1.1 A Dominant Theme of Current Times: Strongly Correlated Electrons ... 1
 1.2 The Growing Interest in Manganite Research 2
 1.3 Nanoscale Phase Separation .. 4
 1.4 Complexity in Materials ... 5
 1.5 Computational Techniques in Complex Systems 5
 1.6 Other Books and Reviews .. 7
 1.7 The Evolution of Condensed Matter Physics
 by J.R. Schrieffer ... 7

2. The Discovery of Manganites
 and the Colossal Magnetoresistance Effect 9
 2.1 The Early Days of Manganites ... 9
 2.2 The Colossal MR Effect .. 13
 2.3 Early Theoretical Studies .. 15
 2.4 Tolerance Factor ... 19
 2.5 High Magnetic Fields .. 20

3. Phase Diagrams and Basic Properties of Manganites 23
 3.1 The Intermediate Bandwidth Compound La_{1-x}Ca_xMnO_3 23
 3.2 Basic Properties of Pr_{1-x}Ca_xMnO_3 30
 3.3 Basic Properties of La_{1-x}Sr_xMnO_3 35
 3.4 Half-Metallic Ferromagnets .. 38
 3.5 Basic Properties of Nd_{1-x}Sr_xMnO_3 and Pr_{1-x}Sr_xMnO_3 41
 3.6 Summary of Results for Perovskites 42
 3.7 Basic Properties of Bilayer Manganites 42
 3.8 Basic Properties of Single-Layer Manganites 48

4. Preliminary Theoretical Considerations:
 Coulombic and Jahn Teller Effects 51
 4.1 Basic Multi Orbital Model and On Site Coulomb Interactions 51
 4.2 Crystal Field Splitting and Jahn Teller Effect 57
 4.2.1 Perturbing Potential due to the Crystal 57
 4.2.2 The Jahn Teller Effect ... 63
5. Models for Manganites ... 71
 5.1 Coulombic Terms ... 71
 5.2 Heisenberg Term ... 72
 5.3 The Electron–Phonon Interaction 73
 5.4 A Simple but Realistic Model for Manganites 74
 5.5 The One-Orbital Model 75
 5.6 The Limit of $J_H = \infty$ 76
 5.7 The Relevance of Jahn–Teller Phonons 77
 5.8 The Two-Orbital Model 78
 5.9 Hopping Amplitudes 79
 5.10 Noninteracting e_g–electron Model 81
 5.11 Estimation of Couplings 83

6. The One-Orbital Model:
 Phase Diagram and Dominant Correlations 87
 6.1 Phase Diagram at $J_{AF} = 0.0$ 87
 6.2 Ferromagnetism ... 88
 6.2.1 Critical Temperature of the 3D One-Orbital Model
 in the Ferromagnetic Regime 93
 6.3 Antiferromagnetism at Electronic Density $\langle n \rangle = 1.0$.. 95
 6.4 Phase Separation 96
 6.4.1 Compressibility and Phase Separation 100
 6.4.2 High Compressibility near Phase Separation 102
 6.5 Spin Incommensurability 103
 6.6 Phase Diagram using Quantum $S = 3/2$ Spins 105
 6.7 Influence of Long-Ranged Coulomb Repulsion
 on Phase Separation 109
 6.8 Phase Diagram Including the J_{AF} Coupling 111
 6.8.1 Exotic Phases Induced by J_{AF} 112
 6.9 The Spin–Fermion Model for Cuprates
 by A. Moreo ... 117
 6.10 Appendix I: The Effective Hopping $t \cos \frac{\theta}{2}$ 119
 6.11 Appendix II: Brief Introduction to the Kondo Effect .. 122

7. Monte Carlo Simulations and Application
 to Manganite Models .. 125
 with G. Alvarez and A. Feiguin 125
 7.1 Numerical Integration 125
 7.1.1 Simple Sampling 126
 7.1.2 Importance Sampling 126
 7.2 Monte Carlo Simulations 127
 7.2.1 Importance Sampling of Physical Quantities 127
 7.2.2 Markov Processes 128
 7.2.3 Sampling Techniques 129
 7.3 The Ising Model ... 130
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>A Brief Summary of Quantum MC Techniques</td>
<td>133</td>
</tr>
<tr>
<td>7.5</td>
<td>Basic Monte Carlo Formalism for Manganite Models</td>
<td>137</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Calculation of Static Observables</td>
<td>139</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Calculation of Time-dependent Observables</td>
<td>141</td>
</tr>
<tr>
<td>7.6</td>
<td>Details of the Monte Carlo Programs</td>
<td>144</td>
</tr>
<tr>
<td>7.7</td>
<td>Appendix: Summary of Rigorous Results for the Heisenberg Model</td>
<td>151</td>
</tr>
<tr>
<td>7.7.1</td>
<td>A. Short-Range Interactions</td>
<td>152</td>
</tr>
<tr>
<td>7.7.2</td>
<td>B. Long-Range Interactions</td>
<td>153</td>
</tr>
<tr>
<td>7.7.3</td>
<td>C. Ising Interactions</td>
<td>153</td>
</tr>
<tr>
<td>7.8</td>
<td>Appendix: MC Code for the Ising Model</td>
<td>154</td>
</tr>
<tr>
<td>8.</td>
<td>Mean-Field Approximation</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Brief Introduction</td>
<td>157</td>
</tr>
<tr>
<td>8.2</td>
<td>Application to Manganite Models</td>
<td>159</td>
</tr>
<tr>
<td>8.3</td>
<td>Solution of the Mean-Field Equations</td>
<td>165</td>
</tr>
<tr>
<td>9.</td>
<td>Two-Orbitals Model and Orbital Order</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Monte Carlo Results and Phase Diagram</td>
<td>169</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Phase Diagram in the Hole-Undoped Case</td>
<td>171</td>
</tr>
<tr>
<td>9.1.2</td>
<td>New Phases in the Undoped Limit?</td>
<td>175</td>
</tr>
<tr>
<td>9.1.3</td>
<td>Phase Diagram at Hole Density $x \neq 0$</td>
<td>177</td>
</tr>
<tr>
<td>9.2</td>
<td>Effective t-J-like Hamiltonians and Orbitons</td>
<td>180</td>
</tr>
<tr>
<td>9.3</td>
<td>Resonant X-ray Scattering as a Probe of Orbital and Charge Ordering</td>
<td></td>
</tr>
<tr>
<td>9.3</td>
<td>by C.S. Nelson, J.P. Hill, and D. Gibbs</td>
<td>184</td>
</tr>
<tr>
<td>9.4</td>
<td>Orbital Ordering and Resonant X-ray Scattering</td>
<td></td>
</tr>
<tr>
<td>9.4</td>
<td>in Colossal Magnetoresistive Manganites</td>
<td></td>
</tr>
<tr>
<td>9.4</td>
<td>by S. Ishihara and S. Maekawa</td>
<td>188</td>
</tr>
<tr>
<td>10.</td>
<td>Charge Ordering: CE-States, Stripes, and Bi-Stripes</td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>Early Considerations</td>
<td>193</td>
</tr>
<tr>
<td>10.2</td>
<td>Monte Carlo and Mean-Field Approximations</td>
<td>194</td>
</tr>
<tr>
<td>10.3</td>
<td>Charge Stacking</td>
<td>196</td>
</tr>
<tr>
<td>10.4</td>
<td>Stripes</td>
<td>197</td>
</tr>
<tr>
<td>10.5</td>
<td>The Band-Insulator Picture</td>
<td>199</td>
</tr>
<tr>
<td>10.5.1</td>
<td>A Reminder of the Band-Insulator Concept</td>
<td>199</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Band-Insulator in the Context of Half-Doped Manganites</td>
<td>201</td>
</tr>
<tr>
<td>10.5.3</td>
<td>Bi-stripe Structure at $x > 0.5$</td>
<td>208</td>
</tr>
</tbody>
</table>
11. Inhomogeneities in Manganites:
 The Case of La$_{1-x}$Ca$_x$MnO$_3$... 213
 11.1 Inhomogeneities in La$_{1-x}$Ca$_x$MnO$_3$ 214
 11.1.1 Brief Introduction to Neutron Scattering
 by J. A. Fernandez-Baca ... 214
 11.1.2 Neutron Scattering in La$_{1-x}$Ca$_x$MnO$_3$ 222
 11.1.3 Anomalous Softening of Zone-Boundary Magnons 225
 11.1.4 Volume Thermal Expansion 228
 11.1.5 Electron Microscopy ... 230
 11.1.6 Brief Introduction to STM 232
 11.1.7 Scanning Tunneling Spectroscopy in La$_{1-x}$Ca$_x$MnO$_3$ 233
 11.1.8 PDF, X-Ray, and Small-Angle Neutron Scattering Experiments 235
 11.1.9 Brief Introduction to Nuclear Magnetic Resonance 237
 11.1.10 Nuclear Magnetic Resonance in La$_{1-x}$Ca$_x$MnO$_3$ 239
 11.1.11 The NMR “Wipeout” Effect
 by G. Papavassiliou ... 241
 11.1.12 Influence of Cr Doping on Charge-Ordered Manganites 243
 11.1.13 Giant Noise in Manganites 245
 11.1.14 Other Results Related with Phase Separation 247
 11.2 Inhomogeneities in Electron-Doped Manganites 248
 11.3 Probing of Phase-segregated Systems with Low-Temperature
 Heat-Capacity Measurements
 by J.J. Neumeier and A.L. Cornelius 251

12. Optical Conductivity .. 255
 12.1 $\sigma(\omega)$: Experimental Results in Manganites 255
 12.2 $\sigma(\omega)$: Theoretical Results 262
 12.3 Brief Introduction to Experimental Aspects
 of Optical Spectroscopy
 by T.W. Noh .. 267

13. Glassy Behavior and Time-Dependent Phenomena 273
 13.1 Brief Introduction to Spin-Glasses 273
 13.2 Glassy Behavior in Manganites 277
 13.2.1 Long Relaxation Times 277
 13.2.2 Phase Separation at $x = 0.5$ LCMO 278
 13.2.3 Manganites: Canonical Glasses or a New Glassy State? 280
 13.3 Phase Separation, Time-Dependent Effects,
 and Glassy Behavior in the CMR Manganites
 by P. Schiffer .. 281

14. Inhomogeneities in La$_{1-x}$Sr$_x$MnO$_3$
 and Pr$_{1-x}$Ca$_x$MnO$_3$... 287
 14.1 Results for La$_{1-x}$Sr$_x$MnO$_3$ 287
14.1.1 Low Hole Density 287
14.1.2 Density $x \approx 1/8$ 289
14.1.3 Large Hole Density: Double-Exchange Behavior? 290
14.1.4 Inhomogeneities in Sr-Based Manganites at $x = 0.5$ 291
14.2 Results for Pr$_{1-x}$Ca$_x$MnO$_3$ 292

15. Inhomogeneities in Layered Manganites 295
 15.1 Mixed-Phase Tendencies in Bilayers 295
 15.1.1 Inhomogeneities at $x = 0.50$ 295
 15.1.2 Inhomogeneities at $x = 0.40$ 296
 15.1.3 Inhomogeneities at $x \sim 0.30$ 298
 15.1.4 Study of (La$_{1-x}$Nd$_x$)$_{2-2z}$Sr$_{1+2z}$Mn$_2$O$_7$ 299
 15.2 Inhomogeneities in Single Layers 300

16. An Elementary Introduction to Percolation 303
 16.1 Basic Considerations 303
 16.2 Resistor Networks 305
 16.3 Anderson Localization 308
 16.4 Quantum Percolation 309
 16.5 Appendix: Solution of the Random-Resistor-Network Equations 311

17. Competition of Phases as the Origin of the CMR 313
 17.1 Quenched Disorder Influence on First-Order Transitions
 and Mesoscopic Coexisting Clusters 313
 17.2 Random Field Ising and Heisenberg Models 316
 17.3 Effective Resistor Network Approximation 320
 17.3.1 First-Order Percolation Transitions 325
 17.3.2 Calculation of Conductances in Quantum Problems 325
 17.3.3 The Difficult Task of Calculating Resistivities 327
 17.4 Strain and Long-Range Coulombic Effects 328
 17.5 Competition Between Ordered States
 Leading to "Quantum-Critical"-Like Behavior 329
 17.5.1 A Toy Model of Competing Phases 329
 17.5.2 Estimating Resistances in Mixed-Phase Manganites 333
 17.5.3 Huge MR in the Presence of Small Magnetic Fields 334
 17.5.4 Prediction of a New High-Temperature Scale T^* 336
 17.6 Experimental Phase Diagrams
 in the FM CO Region of Competition 337
 17.7 Control of Quenched Disorder in Manganites
 by Y. Tokura 340
 17.8 More on the Influence of Disorder on T_C 343
 17.9 Transition From Charge-Ordered
 to Ferromagnetic Metallic States and Giant Isotope Effect
 by D.I. Khomskii 344
XIV Contents

18. Pseudogaps and Photoemission Experiments................. 349
 18.1 Brief Introduction to Photoemission Experiments......... 349
 18.2 Pseudogap in Manganites: Experimental Investigations..... 354
 18.3 Pseudogap in Manganites: Theoretical Investigations..... 356
 18.4 Properties of One Hole 359

19. Charge-Ordered Nanoclusters above TC:
 the Smoking Gun of Phase Separation? 361
 19.1 Introduction and Relevance of Results
 Discussed in this Chapter 361
 19.2 Diffuse Scattering and Butterfly-Shaped Patterns 362
 19.2.1 Bilayers .. 362
 19.2.2 Perovskites 363
 19.3 CE-type Clusters above TC 365
 19.3.1 Neutron Scattering Applied to LCMO x = 0.3 365
 19.3.2 Size and Internal Structure of Charge-Ordered Clusters 367
 19.3.3 Behavior of Nanoclusters with Magnetic Fields 369
 19.3.4 Electron Diffraction for LCMO x = 0.3 370
 19.3.5 Neutron Diffraction and Reverse Monte Carlo 370
 19.3.6 The Interesting Case of Sm1−xSr2MnO3 371
 19.4 A New Temperature Scale T* above TC 372

20. Other Compounds with Large MR
 and/or Competing FM AF Phases 377
 20.1 Eu-based Compounds 377
 20.2 Diluted Magnetic Semiconductors 379
 20.3 Ruthenates .. 380
 20.4 More Materials with Large MR or AF FM Competition 381
 20.5 Illuminating Magnetic Cluster Formation
 with Inelastic Light Scattering
 by S.L. Cooper, H. Rho, and C.S. Snow 384
 20.5.1 Introduction 384
 20.5.2 Application to Eu-based Semiconductors 388
 20.5.3 Cluster Formation Temperature T* and Percolation . 391

21. Brief Introduction to Giant Magnetoresistance (GMR) 395
 21.1 Giant Magnetoresistance 395
 21.2 Applications 401
 21.2.1 Magnetic Recording 401
 21.2.2 Nonvolatile Memories 403
 21.2.3 Magnetic Tunnel Junctions 403
Nanoscale Phase Separation and Colossal Magnetoresistance
The Physics of Manganites and Related Compounds
Dagotto, E.
2003, XVIII, 459 p., Hardcover
ISBN: 978-3-540-43245-6