The Desert Biome, Survival Adaptations and Strategies of Annual Plant Species

1 Introduction

1.1 The Environment in Deserts and Arid Zones

1.1.1 Deserts with Winter or Summer Rain

1.1.2 Classification of Semi-Arid and Arid Zones According to the Amounts of Rain and Vegetation Zones

1.1.3 Annuals in Deserts and Survival Adaptations Throughout the Stages of Their Life Cycles

1.2 Plant Adaptation and Survival Strategies

1.3 The Negev Desert

1.3.1 Rain Amounts and Distribution

1.3.2 Amounts of Runoff Water After an Intense Rainfall Affected by Soil Crust, Stones and Slope Gradient

1.3.3 Biotic Activity, Diggings, Distribution of Runoff Water and Plant Succession

1.3.4 Temperatures in Winter or Summer

1.3.5 Temperatures, Relative Humidity and Rain Efficiency for Seed Germination

1.3.6 Day Length, Date of Seed Germination, Plant Development, Flowering and Plant Life Span

1.3.7 Dew During Winter or Summer Affecting Plant Adaptation

1.3.8 The Annual Environmental Factors and Life Cycle of Annual Plants

1.3.9 Seed Collectors

1.4 Conclusion
Contents

2 Flowering Strategies

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>37</td>
</tr>
<tr>
<td>2.2</td>
<td>Flowering Adaptations and Strategies of Perennial Plants</td>
<td>41</td>
</tr>
<tr>
<td>2.3</td>
<td>Flowering Adaptations and Strategies of Selected Annual Plants</td>
<td>47</td>
</tr>
<tr>
<td>2.3.1</td>
<td>One-Seasonal Winter Annuals</td>
<td>47</td>
</tr>
<tr>
<td>2.3.1.1</td>
<td>Facultative Long-Day Response for Flowering (FLD)</td>
<td>48</td>
</tr>
<tr>
<td>2.3.1.2</td>
<td>The Day Length Independent Response for Flowering (DIF)</td>
<td>54</td>
</tr>
<tr>
<td>2.3.1.3</td>
<td>Intermediates</td>
<td>57</td>
</tr>
<tr>
<td>2.3.1.4</td>
<td>Single-Season Summer Annuals</td>
<td>58</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Bi-seasonal Plants</td>
<td>59</td>
</tr>
<tr>
<td>2.3.2.1</td>
<td>Long-day (LD) Response for Flowering</td>
<td>60</td>
</tr>
<tr>
<td>2.3.2.2</td>
<td>Flowering Under Short Days and High Temperatures</td>
<td>61</td>
</tr>
<tr>
<td>2.4</td>
<td>Conclusion</td>
<td>62</td>
</tr>
</tbody>
</table>

3 Strategies of Phenotypic Plasticity of Germination During Seed Development and Maturation

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>65</td>
</tr>
<tr>
<td>3.2</td>
<td>Environmental Factors Affecting Phenotypic Germination Plasticity</td>
<td>66</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Seed Maturation Dates in a Natural Environment Affecting Germination</td>
<td>66</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Day Length During Plant Development and Seed Maturation</td>
<td>70</td>
</tr>
<tr>
<td>3.2.2.1</td>
<td>Long or Short Days Affecting Seed Coat Permeability to Water</td>
<td>70</td>
</tr>
<tr>
<td>3.2.2.2</td>
<td>Day Length and Plant Age Affect Seed Plasticity of Germination</td>
<td>75</td>
</tr>
<tr>
<td>3.2.2.3</td>
<td>Short-Term and Long-Term Seed Banks</td>
<td>75</td>
</tr>
<tr>
<td>3.2.2.4</td>
<td>Quantitative Short-Day Effect</td>
<td>76</td>
</tr>
<tr>
<td>3.2.2.5</td>
<td>Quantitative Long-Day Effect</td>
<td>77</td>
</tr>
<tr>
<td>3.2.2.6</td>
<td>Day Length Effect on Short-Term and Long-Term Seed Banks</td>
<td>81</td>
</tr>
<tr>
<td>3.2.2.7</td>
<td>Day Length Affects Seed Germination of Plant Species with Soft Fruit</td>
<td>82</td>
</tr>
<tr>
<td>3.2.2.8</td>
<td>The Ecological Importance of the Critical Time During Seed Maturation at Which Day Length Affects Seed Germination</td>
<td>86</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>-----</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Influences of Light Quality During Seed Maturation on Seed Germination</td>
<td>87</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Water Stress During Seed Maturation Affecting Seed Germination</td>
<td>89</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Water and Temperature Stresses</td>
<td>91</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Temperatures During Maturation Affecting Seed Germination</td>
<td>93</td>
</tr>
<tr>
<td>3.2.7</td>
<td>Plant Age, Seed Size and Germination Plasticity</td>
<td>95</td>
</tr>
<tr>
<td>3.3</td>
<td>Seed Position on the Mother Plant During Seed Development and Maturation Affecting Seed Germination</td>
<td>97</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Seed Position in the Capsules, Pods and Fruit</td>
<td>97</td>
</tr>
<tr>
<td>3.3.2</td>
<td>The Effect of Position of Capsules or Pods in the Plant Canopy on Seed Germination</td>
<td>100</td>
</tr>
<tr>
<td>3.3.2.1</td>
<td>Central or Peripheral Capsules</td>
<td>103</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Position of Pods in the Upper and Lower Part of the Inflorescence</td>
<td>103</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Position of the Fruits, Dimorphism and Germinability</td>
<td>104</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Position, Heteromorphism and Germination</td>
<td>105</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Seed Position in Inflorescences That Are Also Dispersal Units</td>
<td>105</td>
</tr>
<tr>
<td>3.3.6.1</td>
<td>Position and Heteroblasty in Pteranthus dichotomus</td>
<td>106</td>
</tr>
<tr>
<td>3.3.6.2</td>
<td>The Heteroblasty of the Caryopses of Synaptospermic, Lignified Dispersal Units</td>
<td>108</td>
</tr>
<tr>
<td>3.3.6.3</td>
<td>The Influences of the Order of the Caryopses on Germination Percentage, Plant Development, Flowering and the Number of Tillers and Spikelets</td>
<td>113</td>
</tr>
<tr>
<td>3.3.6.4</td>
<td>The Influence of the Order of the Caryopses on the Size and Germination of the Caryopses of the Following Generation</td>
<td>114</td>
</tr>
<tr>
<td>3.3.7</td>
<td>Position in Burr – a Synaptospermic Dispersal Unit</td>
<td>116</td>
</tr>
<tr>
<td>3.3.8</td>
<td>Position of Achenes in the Capitulum Whorls Affecting the Time Distribution of Dispersal and Germination (serotinas)</td>
<td>116</td>
</tr>
<tr>
<td>3.3.9</td>
<td>Position Effect on Seed Germinability and Seedling Survival of Female and Hermaphrodite Flowers in Inflorescences</td>
<td>118</td>
</tr>
<tr>
<td>3.3.10</td>
<td>Position of Achenes in Umbels Affecting Germinability</td>
<td>118</td>
</tr>
<tr>
<td>3.3.11</td>
<td>Position of Aerial and Subterranean Inflorescences Affecting Dispersability and Germinability</td>
<td>119</td>
</tr>
<tr>
<td>3.4</td>
<td>Desiccation Tolerance of Maturing Seeds</td>
<td>122</td>
</tr>
<tr>
<td>3.5</td>
<td>Conclusion</td>
<td>125</td>
</tr>
</tbody>
</table>
4 Strategies of Phenotypic Plasticity of Germination: Dormancy After Seed Maturation

4.1 Introduction .. 127
4.2 Post Maturation Environmental Influences on Dry Seed Primary Dormancy (After-Ripening) ... 132
 4.2.1 *Hordeum spontaneum* .. 132
 4.2.2 *Schismus arabicus* ... 139
 4.2.3 *Stipa capensis* .. 141
 4.2.4 *Ammochloa palaeastina* 142
 4.2.5 *Plantago coronopus* .. 143
 4.2.6 *Spergularia diandra* .. 145
4.3 Periods of Storage of Dry Seeds at High Temperatures Affecting Primary Dormancy in Seeds of Different Plant Species 145
 4.3.1 Short Periods of Dry Seed Storage at High Temperatures Increases Germination .. 146
 4.3.2 Long Periods of Dry Seed Storage at High Temperatures ... 146
 4.3.2.1 *Portulaca oleracea* 146
 4.3.2.2 *Hirschfeldia incana* 147
 4.3.3 “Bet Hedging” Germination 148
 4.3.3.1 *Asteriscus hierochunticus* 148
 4.3.3.2 *Mesembryanthemum nodiflorum* 148
4.4 Post Maturation Phenotypic Germination Plasticity of Hard Seeds ... 150
 4.4.1 Day Length During Seed Maturation Affecting Hard Seeds .. 150
 4.4.2 Temperature Amplitude During Summer Affecting Hard Seeds .. 150
 4.4.3 Gradual or Sudden Increase of Relative Humidity Affecting Hard Seeds .. 152
 4.4.4 Low Relative Humidity Affecting Seed Germination 156
4.5 Post-Maturation Supra-optimal Temperatures Affecting Germination of Wet Seeds, and Thermodormancy .. 156
 4.5.1 *Lactuca serriola* .. 156
 4.5.2 *Lactuca sativa* ... 159
 4.5.3 *Cheiridopsis* .. 166
4.6 Conclusion .. 167
5 Seed Dispersal Adaptations and Strategies 169

5.1 Seed Consumption, Plant Adaptations and Strategies of Seed Dispersal 169

5.2 One-Season Winter Annuals and Seed Dispersal Seasons 174

5.2.1 Dispersal of Lignified, Synaptospermic, Multi-Seeded Dispersal Units at the End of the Season with Rains 174

5.2.2 Entangled Lignified Dispersal Units 175

5.2.3 Dry Unopened, Lignified Pod as a Dispersal Unit 176

5.2.3.1 Multi-Seeded Dispersal Unit 176

5.2.3.2 Single-Seeded Lignified Sections of a Pod 176

5.2.4 Lignified Aerial Seed Banks with Delayed Seed Dispersal by Rain (Serotinous and Hygriescence) 177

5.2.4.1 Dispersal by Rain of Aerial Protected Non-mucilaginous Seeds that ‘Escape’ into the Soil Seed Bank 177

5.2.4.2 Aerial Lignified Seed Banks with Mucilaginous Seeds, Seed Dispersal by Rain During the Season or Seasons Following Maturation 180

5.2.4.3 Shooting of Seeds to a Distance from the Mother Plant Triggered by Rain or Flood Water 188

5.2.4.4 Seeds Released by Rain and Dispersed by Wind 200

5.2.5 Subterranean Lignified, Protected Seed Banks, Germination in Situ 200

5.2.6 Escape Dispersal Adaptations and Strategies of Tiny Seeds 201

5.2.6.1 Tiny, Dust-Like Seeds 201

5.2.6.2 Dispersal by Wind of Small Seeds with Pappus or Corolla 204

5.2.6.3 Dispersal by Wind and Boring Hydrochastic Mechanisms 204

5.2.6.4 Dispersal by Wind of Mucilaginous Seeds During the Dry Season 204

5.2.6.5 Dispersal by Wind of Polymorphic Mucilaginous and Non-mucilaginous Achenes 204

5.2.6.6 Delayed Seed Dispersal and Ballistic Dispersal by Wind 205

5.2.6.7 Seed Dispersal from Exploding Hydrochastic Pods Under Dry Conditions 207

5.2.6.8 Delayed Achene Maturation to the Season with Rain and Dispersal by Wind 207

5.3 Bi-seasonal Annuals and Seed Dispersal by Wind 207
5.3.1 Winged Diaspores Matured Shortly Before the Season with Rains 207
5.3.2 Achenes Matured and Dispersed Daily in Small Portions During the Summer 208
5.4 Conclusion ... 208

6 Germination Adaptations, Strategies and Influences on Germination During Seed Wetting 211

6.1 Introduction .. 211
6.1.1 “Bet Hedging” Germination Strategies 211
6.1.2 Germination Strategies in Deserts with Winter and Summer Rains 213
6.1.3 Germination Strategies of Seasonal Genotypes 213
6.2 Fitness to Habitats and Range of Temperatures for Germination of some Plants Occurring in the Negev ... 214
6.2.1 Geophytes: Temperature for Germination and Habitat Location 214
6.2.2 Adaptation to Temperatures and Salinity in Germination of Two Plants Occurring on Opposite-Facing Slopes of One Hill, in the Negev Desert Highlands 216
6.2.2.1 Medicago laciniata var. laciniata and M. laciniata var. brachycantha 216
6.2.2.2 Helianthemum vesicarium and H. ventosum 216
6.2.3 Germination Adaptations of Local Genotypes at Different Elevations 218
6.2.4 Local Genotypes According to Environmental Factors 219
6.2.5 Exposure of Wet Seeds to Supra-optimal Temperatures and the Imposition of Secondary Dormancy According to Location in the Soil or in Depressions 220
6.2.6 Repair Mechanisms by Short Periods of Wetting, and Seed Germination 220
6.2.7 Environmental Factors Affecting the Phenotypic Plasticity of Germination 221
6.2.8 Germination and the Minimum Amount of Precipitation required 224
6.3 Environmental Factors During Seed Wetting and Germination During the Season with Rain 225
6.3.1 Amounts of Rain, Cautious or Opportunistic
Germination Strategies of Low or High Risk,
Slow or Fast Germinating Seeds. 226
6.3.1.1 Plants with Cautious Strategies of Seed Germination 227
6.3.1.2 Plants with Opportunistic Strategies
of Seed Germination 229
6.3.2 Speed of Germination 229
6.3.2.1 Strategies of Rapidly Germinating Seeds 230
6.3.2.2 Strategies of Slowly Germinating Seeds 230
6.3.2.3 The Presence of Germination Inhibitors
as ‘Rain Gauges’ 231
6.3.3 Species with Mucilaginous Seeds (Myxospermy)
as an Adaptation and Part of the Complementary
Sets of Survival Strategies 232
6.3.3.1 Mucilaginous Seeds That Are Dispersed by Rain 235
6.3.3.2 Mucilaginous Seeds That Are Dispersed During
the Dry Summer 238
6.3.3.3 Mucilaginous and Light-Sensitive Seeds 238
6.3.3.4 Mucilaginous Seeds on the Soil Surface
and Water Conditions Required for Germination 238
6.3.3.5 Mucilaginous Seeds Dispersed by Adhering
to Mammals and Birds 239
6.3.3.6 Dispersal of Mucilaginous Seeds in Edible Fruit
(Endozoochory) 239
6.3.4 Germination Under Mild Winter Temperatures
and High Daytime Relative Humidity Compared
with High Summer Temperatures
and Low Daytime Relative Humidity. 239
6.3.4.1 The Amount of Rain in Mild Winter Temperatures
and High Relative Humidity Affecting Seed
Germination in a Natural Desert Area near Avdat 240
6.3.4.2 Amounts of Water in Summer Required for
Germination at High Temperatures and
Low Relative Humidity. 244
6.3.5 Range of Temperatures for Germination
in Light or Dark 256
6.3.5.1 Schismus arabicus 257
6.3.5.2 Spergularia diandra 260
6.3.5.3 Plantago coronopus 262
6.3.6 Seed Location on the Soil or in the Soil
Seed Bank Affecting Seed Germination,
and Soil Turnover Influences. 262
6.3.6.1 Seeds on the Soil Surface 264
6.3.6.2 Seeds Buried in the Soil 265
6.3.7 Thermodormancy of Winter Germinating Plant Species ... 266
6.3.8 Light During Seed Wetting and Germination ... 267
6.3.8.1 Seed Location in Soil and Germination Regulation by Light 268
6.3.8.2 Influences of the Visible Light Spectrum on Seed Germination 272
6.3.9 Germination Regulation by Soil Inhibitors ... 274
6.4 Conclusion .. 280

7 Embryo and Seedling Survival and Plant Development ... 281

7.1 Introduction .. 281
7.1.1 Embryo Drought Resistance ... 281
7.1.2 Seedling Drought Resistance ... 284
7.2 Seedling Drought Tolerance and Survival ... 284
7.2.1 *Hordeum spontaneum* Effects of Seedling Developmental Stages and Local Genotypes 284
7.2.2 *Schismus arabis*cus .. 288
7.2.2.1 Effects of Seedling Developmental Stages and Caryopsis Size 288
7.2.2.2 Duration of Dry Storage Affecting Seedling Survival and Genotypic Differences 289
7.2.2.3 Size Groups of Caryopses and Re-growth of Seedlings After Rehydration 290
7.2.2.4 Seedling Regrowth After 48 h Affected by Caryopsis Size 291
7.3 Amounts of Water Affecting Seedling Survival ... 292
7.3.1 Irrigation Affecting Seedling Density and Survival 292
7.3.1.1 Different Amounts of Water Affects Seedling Emergence and Survival 292
7.3.1.2 Water Distribution Affects Seedling Emergence and Survival 293
7.3.1.3 Seedling Emergence and Survival After Single Irrigations with Different Amounts of Water .. 294
7.3.1.4 Seedling Survival After Irrigation with 10 mm of Water on 9 to 20 days 294
7.3.1.5 Survival of Three Main Species According to Different Apportioning of the 200 mm of Water ... 295
7.3.1.6 The Number of Seeds (Schizocarps) Produced by *Malva aegyptia* as Influenced by Irrigation in Summer ... 295
7.3.2 The Amount of Precipitation in Winter Affecting Seedling Emergence and Survival ... 296
7.3.2.1 Schismus arabicus ... 296
7.3.2.2 Gymnarrhena micrantha ... 296
7.3.3 Inter-Specific and Intra-Specific Competition and Survival ... 299
7.4 Conclusion ... 301

8 Summary of the Complementary Sets of Survival Strategies of Some Common Species of the Negev Desert That Have Been Studied in Detail ... 303
8.1 Introduction ... 303
8.2 The Complementary Sets of Adaptation and Survival Strategies ... 304
8.2.1 Schismus arabicus ... 304
8.2.1.1 Flowering Facultative Long-Day Response ... 304
8.2.1.2 Influences During and After Maturation on Phenotypic Plasticity of Germination ... 305
8.2.1.3 Escape Seed Dispersal Strategies ... 305
8.2.1.4 Opportunistic Germination Strategies in Mild Winters and Cautious Germination Strategies in Hot Summers ... 305
8.2.1.5 Seedling Drought Tolerance ... 306
8.2.2 Spergularia diandra ... 307
8.2.2.1 Flowering ... 307
8.2.2.2 Phenotypic Plasticity of Germination by Day Length, and Seed Position Effect, During Seed Development and Maturation ... 307
8.2.2.3 Genotypes and Seed Dispersability ... 307
8.2.2.4 The Opportunistic Strategy of Seed Germination ... 307
8.2.2.5 Light, Temperatures and Germination ... 308
8.2.2.6 Dry Storage Duration and Seed Germinability ... 308
8.2.2.7 Germination in Summer ... 308
8.2.2.8 Soil Turnover ... 308
8.2.2.9 Time of Rainfall ... 309
8.2.3 Blepharis spp. ... 309
8.2.3.1 Flowering – Day Length Independent ... 309
8.2.3.2 Seed Dispersal by Rain or Floods from the Protected Aerial Seed Bank and Cautious Germination Strategy ... 309
8.2.3.3 Regulation of Germination by the Mucilaginous Layer Surrounding the Seeds ... 310
Survival Strategies of Annual Desert Plants
Gutterman, Y.
2002, XX, 348 p., Hardcover
ISBN: 978-3-540-43172-5