Table of Contents

1 Topology optimization by distribution of isotropic material 1
 1.1 Problem formulation and parametrization of design 1
 1.1.1 Minimum compliance design 2
 1.1.2 Design parametrization 4
 1.1.3 Alternative problem forms 8
 1.2 Solution methods .. 9
 1.2.1 Conditions of optimality 9
 1.2.2 Implementation of the optimality criteria method 12
 1.2.3 Sensitivity analysis and mathematical programming methods .. 15
 1.2.4 Implementation - the general concept 21
 1.2.5 Topology optimization as a design tool 24
 1.3 Complications ... 28
 1.3.1 Mesh-refinement and existence of solutions 28
 1.3.2 The checkerboard problem 39
 1.3.3 Non-uniqueness, local minima and dependence on data 46
 1.4 Combining topology and shape design 47
 1.5 Variations of the theme ... 53
 1.5.1 Multiple loads ... 53
 1.5.2 Variable thickness sheets 54
 1.5.3 Plate design .. 58
 1.5.4 Other interpolation schemes with isotropic materials 60
 1.5.5 Design parametrization with wavelets 66
 1.5.6 Alternative approaches 68

2 Extensions and applications ... 71
 2.1 Problems in dynamics ... 72
 2.1.1 Free vibrations and eigenvalue problems 72
 2.1.2 Forced vibrations ... 76
 2.2 Buckling problems ... 77
 2.3 Stress constraints ... 79
 2.3.1 A stress criterion for the SIMP model 80
 2.3.2 Solution aspects ... 81
 2.4 Pressure loads .. 84
 2.5 Geometrically non-linear problems 86
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.1</td>
<td>Problem formulation and objective functions</td>
<td>86</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Choice of objective function for stiffness optimization</td>
<td>87</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Numerical problems and ways to resolve them</td>
<td>89</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Examples</td>
<td>90</td>
</tr>
<tr>
<td>2.6</td>
<td>Synthesis of compliant mechanisms</td>
<td>94</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Problem setting</td>
<td>95</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Output control</td>
<td>97</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Path generating mechanisms</td>
<td>98</td>
</tr>
<tr>
<td>2.6.4</td>
<td>Linear modelling</td>
<td>100</td>
</tr>
<tr>
<td>2.6.5</td>
<td>Linear vs. non-linear modelling</td>
<td>101</td>
</tr>
<tr>
<td>2.6.6</td>
<td>Design of thermal actuators</td>
<td>104</td>
</tr>
<tr>
<td>2.6.7</td>
<td>Computational issues</td>
<td>104</td>
</tr>
<tr>
<td>2.7</td>
<td>Design of supports</td>
<td>108</td>
</tr>
<tr>
<td>2.8</td>
<td>Alternative physics problems</td>
<td>110</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Multiphysics problems</td>
<td>111</td>
</tr>
<tr>
<td>2.8.2</td>
<td>MicroElectroMechanical Systems (MEMS)</td>
<td>113</td>
</tr>
<tr>
<td>2.8.3</td>
<td>Stokes flow problems</td>
<td>115</td>
</tr>
<tr>
<td>2.9</td>
<td>Optimal distribution of multiple material phases</td>
<td>117</td>
</tr>
<tr>
<td>2.9.1</td>
<td>One material structures</td>
<td>118</td>
</tr>
<tr>
<td>2.9.2</td>
<td>Two material structures without void</td>
<td>119</td>
</tr>
<tr>
<td>2.9.3</td>
<td>Two material structures with void</td>
<td>120</td>
</tr>
<tr>
<td>2.9.4</td>
<td>Examples of multiphase design</td>
<td>121</td>
</tr>
<tr>
<td>2.10</td>
<td>Material design</td>
<td>122</td>
</tr>
<tr>
<td>2.10.1</td>
<td>Numerical homogenization and sensitivity analysis</td>
<td>123</td>
</tr>
<tr>
<td>2.10.2</td>
<td>Objective functions for material design</td>
<td>124</td>
</tr>
<tr>
<td>2.10.3</td>
<td>Material design results</td>
<td>126</td>
</tr>
<tr>
<td>2.11</td>
<td>Wave propagation problems</td>
<td>138</td>
</tr>
<tr>
<td>2.11.1</td>
<td>Modelling of wave propagation</td>
<td>140</td>
</tr>
<tr>
<td>2.11.2</td>
<td>Optimization of band gap materials</td>
<td>144</td>
</tr>
<tr>
<td>2.11.3</td>
<td>Optimization of band gap structures</td>
<td>146</td>
</tr>
<tr>
<td>2.12</td>
<td>Various other applications</td>
<td>148</td>
</tr>
<tr>
<td>2.12.1</td>
<td>Material design for maximum buckling load</td>
<td>148</td>
</tr>
<tr>
<td>2.12.2</td>
<td>Crashworthiness</td>
<td>149</td>
</tr>
<tr>
<td>2.12.3</td>
<td>Bio-mechanical simulations</td>
<td>151</td>
</tr>
<tr>
<td>2.12.4</td>
<td>Applications in the automotive industry</td>
<td>152</td>
</tr>
<tr>
<td>3</td>
<td>Design with anisotropic materials</td>
<td>159</td>
</tr>
<tr>
<td>3.1</td>
<td>The homogenization approach</td>
<td>160</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Parametrization of design</td>
<td>160</td>
</tr>
<tr>
<td>3.1.2</td>
<td>The homogenization formulas</td>
<td>162</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Implementation of the homogenization approach</td>
<td>167</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Conditions of optimality for compliance optimization</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>- rotations and densities</td>
<td>169</td>
</tr>
<tr>
<td>3.2</td>
<td>Optimized energy functionals</td>
<td>173</td>
</tr>
</tbody>
</table>
3.2.1 Combining local optimization of material properties and spatial optimization of material distribution 174
3.2.2 A hierarchical solution procedure 176

3.3 Optimized energy functionals for the homogenization modelling ... 179
3.3.1 The stress based analysis of optimal layered materials 179
3.3.2 The strain based problem of optimal layered materials 182
3.3.3 The limiting case of Michell's structural continua 183
3.3.4 Comparing optimal energies 186
3.3.5 Optimal energies and the checkerboard problem 189

3.4 Design with a free parametrization of material ... 190
3.4.1 Problem formulation for a free parametrization of design ... 191
3.4.2 The solution to the optimum local anisotropy problems 192
3.4.3 Analysis of the reduced problems 196
3.4.4 Numerical implementation and examples 200
3.4.5 Free material design and composite structures 202

3.5 Plate design with composite materials ... 204
3.5.1 The homogenization approach for Kirchhoff plates 204
3.5.2 Minimum compliance design of laminated plates 206

3.6 Optimal topology design with a damage related criterion ... 214
3.6.1 A damage model of maximizing compliance 215
3.6.2 Design problems .. 218

4 Topology design of truss structures ... 221
4.1 Problem formulation for minimum compliance truss design 223
4.1.1 The basic problem statements in displacements ... 223
4.1.2 The basic problem statements in member forces ... 226
4.1.3 Problem statements including self-weight and reinforcement .. 229

4.2 Problem equivalence and globally optimized energy functionals 230
4.2.1 Conditions of optimality 230
4.2.2 Reduction to problem statements in bar volumes only 233
4.2.3 Reduction to problem statements in displacements only 235
4.2.4 Linear programming problems for single load problems 238
4.2.5 Reduction to problem statements in stresses only 240
4.2.6 Extension to contact problems 242

4.3 Computational procedures and examples 245
4.3.1 An optimality criteria method 246
4.3.2 A non-smooth descent method 247
4.3.3 SDP and interior point methods 248
4.3.4 Examples .. 250

4.4 Extensions of truss topology design 252
4.4.1 Combined truss topology and geometry optimization 252
4.4.2 Truss design with buckling constraints 255
4.4.3 Control of free vibrations .. 256
4.4.4 Variations of the theme .. 258

5 Appendices .. 261
5.1 Appendix: Matlab codes ... 261
 5.1.1 A 99 line topology optimization code for compliance
 minimization .. 261
 5.1.2 Matlab implementation .. 262
 5.1.3 Extensions ... 264
 5.1.4 Matlab code .. 267
 5.1.5 A 105 line MATLAB code for compliant mechanism
 synthesis .. 269
 5.1.6 A 91 line MATLAB code for heat conduction problems . 270
5.2 Appendix: The existence issue 272
 5.2.1 Variable thickness sheet design: Existence 272
 5.2.2 Density design with a gradient constraint: Existence . 274
5.3 Appendix: Aspects of shape design: The boundary variations
 method ... 276
 5.3.1 Design parametrization in shape design 276
 5.3.2 The basics of a boundary shape design method 277
5.4 Appendix: Homogenization and layered materials 280
 5.4.1 The homogenization formulas 281
 5.4.2 The smear-out process 283
 5.4.3 The moment formulation 287
 5.4.4 Stress criteria for layered composites 291
 5.4.5 Homogenization formulas for Kirchhoff plates 295
 5.4.6 Hashin-Shtrikman-Walpole (HSW) bounds 296
5.5 Appendix: Barrier methods for topology design 298
 5.5.1 Notation ... 298
 5.5.2 Interior-point methods 299
 5.5.3 A barrier method for topology optimization 301
 5.5.4 The free material multiple load case as a SDP problem . 302

6 Bibliographical notes ... 305
 6.1 Books and survey papers 305
 6.2 Papers .. 307

References .. 319

Author index .. 355

Index ... 365