3. High-Pressure Synthesis and Low-Pressure Vapor Growth of Diamond Seeds .. 53
 3.1 Early History of Diamond Synthesis 53
 3.2 Thermodynamic Predictions 55
 3.3 Success of the High-Pressure Process 57
 3.4 Early Exploration of Low-Pressure Vapor Growth of Diamond Seeds .. 64
 3.5 Thermodynamic Conditions for Crystal Growth from the Vapor Phase .. 65
 3.5.1 Supersaturation Degree 65
 3.5.2 Nucleation Barrier 66
 3.6 Diamond Seed Growth from the Vapor Phase 71

4. Activated Low-Pressure Diamond Growth from the Vapor Phase 75
 4.1 Success of Activated Low-Pressure Vapor Growth Process .. 75
 4.2 Setup of Activated Low-Pressure Growth from the Vapor Phase .. 79
 4.3 Preferential Etching Kinetic Model of SAH 85
 4.4 Kinetic Control Model .. 86
 4.5 Some Thermodynamic Theoretical Models of the 1980s .. 89
 4.5.1 Quasiequilibrium Model 90
 4.5.2 Surface Reaction Thermodynamic Model 94
 4.5.3 Defect-Induced Stabilization Model 96

5. Reaction Coupling Model .. 99
 5.1 Chemical Pump Model .. 99
 5.1.1 Mechanism of the Chemical Pump 100
 5.1.2 Chemical Pump Reaction 103
 5.2 Calculation of the Chemical Pump Effect 104
 5.3 Reaction Coupling Model 109
 5.4 Thermodynamic Data for Activated Graphite 112
 5.5 New Concept of Nonequilibrium (Stationary) Phase Diagrams .. 116
 5.6 Nonequilibrium Nondissipation Principle 119
 5.7 Calculation of Nonequilibrium Phase Diagrams 122
 5.8 Some Results and Discussions 125
 5.9 Morphology of Diamond Crystals and Orientation of Diamond Films 132
6. Nonequilibrium Phase Diagrams of C-H, C-O and Other Binary Systems 139
6.1 T-X Nonequilibrium Phase Diagrams for C-H Binary Systems 139
6.2 T-p-X Nonequilibrium Phase Diagrams for C-H and C-O Binary Systems 146
6.3 Nonequilibrium Phase Diagrams for Other Binary Systems 150

7.1 Bachmann’s Empirical Phase Diagram for the C-H-O System 154
7.2 Projective Nonequilibrium Phase Diagrams for C-H-O Systems 157
7.3 Influences of T and p Ranges on C-H-O Ternary Phase Diagrams 161
7.4 Cross-Sectional Nonequilibrium Phase Diagrams for C-H-O Ternary Systems 165
7.5 Nonequilibrium Phase Diagrams for C-H-X Ternary Systems 169

8. Further Discussions on Some Debates 173
8.1 Coupled Reaction in Biochemistry 174
8.2 The Seventy-Year Controversy About Reaction Coupling in Chemistry 178
8.3 Quantitative Verification of Reaction Coupling in Inanimate Systems 185
8.4 Reaction Barrier in Synthetic Diamond Processes 195
8.4.1 “Unified Barrier” Model 195
8.4.2 Thermodynamic Coupling Effect and Catalytic Effect 196
8.4.3 Analysis of Calculated Results and Conclusions 203
8.5 Other Thermodynamic Discussions on Activated CVD Diamond 209
8.5.1 Charged Cluster Model 209
8.5.2 Other Thermodynamic Discussions 211

9. Other Applications and Summary 213
9.1 Nonequilibrium Phase Diagrams for the Activated CVD cBN Process 213
9.2 Modern Thermodynamics for Belousov–Zhabotinsky Reactions 217
9.3 A Characteristic of Life: Drawing Negative Entropy from its Environment 219
XII Contents

9.4 Some Similarities of Reaction Coupling in Biological and Inanimate Systems 224
9.5 Some Conclusions, Further Development and Prospects... 228

References.. 237

Index .. 251
Nonequilibrium Nondissipative Thermodynamics
With Application to Low-Pressure Diamond Synthesis
Wang, J.-T.
2002, XII, 258 p., Hardcover
ISBN: 978-3-540-42802-2