Contents
Theory of Operator Algebras I

Introduction XVII

Chapter I
Fundamentals of Banach Algebras and C^*-Algebras 1

0. Introduction 1
1. Banach Algebras 2
2. Spectrum and Functional Calculus 6
3. Gelfand Representation of Abelian Banach Algebras 13
4. Spectrum and Functional Calculus in C^*-Algebras 17
5. Continuity of Homomorphisms 21
6. Positive Cones of C^*-Algebras 23
7. Approximate Identities in C^*-Algebras 25
8. Quotient Algebras of C^*-Algebras 31
9. Representations and Positive Linear Functionals 35
10. Extreme Points of the Unit Ball of a C^*-Algebra 47
11. Finite Dimensional C^*-Algebras 50
 Notes 54
 Exercises 55

Chapter II
Topologies and Density Theorems in Operator Algebras 58

0. Introduction 58
1. Banach Spaces of Operators on a Hilbert Space 59
2. Locally Convex Topologies in $L(\mathcal{H})$ 67
3. The Double Commutation Theorem of J. von Neumann 71
4. Density Theorems 79
 Notes 99
Chapter III
Conjugate Spaces 101

0. Introduction 101
1. Abelian Operator Algebras 102
2. The Universal Enveloping von Neumann Algebra of a C^*-Algebra 120
3. W^*-Algebras 130
4. The Polar Decomposition and the Absolute Value of Functionals 139
5. Topological Properties of the Conjugate Space 147
6. Semicontinuity in the Universal Enveloping von Neumann Algebra* 157
 Notes 179

Chapter IV
Tensor Products of Operator Algebras and Direct Integrals 181

0. Introduction 181
1. Tensor Product of Hilbert Spaces and Operators 182
2. Tensor Products of Banach Spaces 188
3. Completely Positive Maps 192
4. Tensor Products of C^*-Algebras 203
5. Tensor Products of W^*-Algebras 220
 Notes 229
6. Integral Representations of States 230
7. Representation of $L^2(\Gamma,\mu) \otimes \mathcal{H}$, $L^1(\Gamma,\mu) \otimes \mathcal{A}$, and $L(\Gamma,\mu) \otimes \mathcal{M}$ 253
8. Direct Integral of Hilbert Spaces, Representations, and von Neumann Algebras 264
 Notes 287

Chapter V
Types of von Neumann Algebras and Traces 289

0. Introduction 289
1. Projections and Types of von Neumann Algebras 290
2. Traces on von Neumann Algebras 309
 Notes 335
3. Multiplicity of a von Neumann Algebra on a Hilbert Space 336
4. Ergodic Type Theorem for von Neumann Algebras* 344
5. Normality of Separable Representations* 352
6. The Borel Spaces of von Neumann Algebras 359
7. Construction of Factors of Type II and Type III 362
 Notes 374

Appendix
Polish Spaces and Standard Borel Spaces 375

Bibliography 387
Monographs 387
Papers 389
Notation Index 409
Subject Index 411