Underlying most of the IWANN calls for papers is the aim to reassert some of the motivations of the groundwork stages of biocybernetics and the later bionics formulations and to try to reconsider the present value of two basic questions. The first one is: “What does neuroscience bring into computation (the new bionics)”? That is to say, how can we seek inspiration in biology? Titles such as “computational intelligence”, “artificial neural nets”, “genetic algorithms”, “evolutionary hardware”, “evolutive architectures”, “embryonics”, “sensory neuromorphic systems”, and “emotional robotics” are representatives of the present interest in “biological electronics” (bionics).

The second question is: “What can return computation to neuroscience (the new neurocybernetics)?” That is to say, how can mathematics, electronics, computer science, and artificial intelligence help the neurobiologists to improve their experimental data modeling and to move a step forward towards the understanding of the nervous system?

Relevant here are the general philosophy of the IWANN conferences, the sustained interdisciplinary approach, and the global strategy, again and again to bring together physiologists and computer experts to consider the common and pertinent questions and the shared methods to answer these questions.

Unfortunately, we have not always been successful in the six biennial meetings from 1991. Frequently the well-known computational models of the past have been repeated and our understanding about the neural functioning of real brains is still scarce. Also the biological influence on computation has not always been used with the necessary methodological care. However IWANN 2001 constituted a new attempt to formulate new models of bio-inspired neural computation with the deeply-held conviction that the interdisciplinary way is, possibly, the most useful one.

IWANN 2001, the 6th International Work-Conference in Artificial and Natural Neural Networks, took place in Granada (Spain) June 13-15, 2001, and addressed the following topics:

1. **Foundations of connectionism.** Brain organization principles. Connectionist versus symbolic representations.
2. **Biophysical models of neurons.** Ionic channels, synaptic level, neurons, and circuits.
3. **Structural and functional models of neurons.** Analogue, digital, probabilistic, Bayesian, fuzzy, object oriented, and energy related formulations.
4. **Learning and other plasticity phenomena.** Supervised, non-supervised, and reinforcement algorithms. Biological mechanisms of adaptation and plasticity.
5. **Complex systems dynamics.** Optimization, self-organization, and cooperative processes. Evolutionary and genetic algorithms. Large scale neural models.
VI Preface

6. **Artificial intelligence and cognitive processes.** Knowledge modeling. Natural language understanding. Intelligent multi-agent systems. Distributed AI.

7. **Methodology for nets design.** Data analysis, task identification, and recursive hierarchical design.

8. **Nets simulation and implementation.** Development environments and editing tools. Implementation. Evolving hardware.

10. **Other applications.** Artificial vision, speech recognition, spatio-temporal planning, and scheduling. Data mining. Sources separation. Applications of ANNs in robotics, economy, internet, medicine, education, and industry.

IWANN 2001 was organized by the Universidad Nacional de Educación a Distancia, UNED (Madrid), and the Universidad de Granada, UGR (Granada), also in cooperation with IFIP (Working Group in Neural Computer Systems, WG10.6), and the Spanish RIG IEEE Neural Networks Council.

Sponsorship was obtained from the Spanish CICYT and the organizing universities (UNED and UGR).

The papers presented here correspond to talks delivered at the conference. After the evaluation process, 200 papers were accepted for oral or poster presentation, according to the recommendations of reviewers and the authors' preferences. We have organized these papers in two volumes arranged basically following the topics list included in the call for papers. The first volume, entitled “Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence” is divided into four main parts and includes the contributions on:

I. Foundations of connectionism and biophysical models of neurons.
II. Structural and functional models of neurons.
III. Learning and other plasticity phenomena, and complex systems dynamics.
IV. Artificial intelligence and cognitive processes.

In the second volume, with the title, “Bio-inspired Applications of Connectionism”, we have included the contributions dealing with applications. These contributions are grouped into three parts:

I. Bio-inspired systems and engineering.
II. Methodology for nets design, and nets simulation and implementation.
III. Other applications (including image processing, medical applications, robotics, data analysis, etc.).

We would like to express our sincere gratitude to the members of the organizing and program committees, in particular to F. de la Paz and J. R. Álvarez-Sánchez, to the reviewers, and to the organizers of preorganized sessions for their invaluable effort in helping with the preparation of this conference. Thanks also to the invited speakers for their effort in preparing the plenary lectures.

Last, but not least, the editors would like to thank Springer-Verlag, in particular Alfred Hofmann, for the continuous and excellent cooperative collaboration.

June 2001

José Mira
Alberto Prieto
Invited Speakers

Oscar Herreras, Dept. of Research. Hospital Ramón y Cajal (Spain)
Daniel Mange, Logic Systems Laboratory, IN-Ecublens (Switzerland)
Leonardo Reyneri, Dip. Elettronica, Politecnico di Torino (Italy)
John Rinzel, Center for Neural Science, New York University (USA)

Field Editors

Igor Aizenberg, Neural Networks Technologies Ltd. (Israel)
Amparo Alonso Betanzos, University of A Coruña (Spain)
Jose Manuel Benitez Sanchez, Universidad de Granada (Spain)
Enrique Castillo Ron, Universidad de Cantabria (Spain)
Andreu Català Mallofré, Univ. Politècnica de Catalunya (Spain)
Carolina Chang, Universidad Simón Bolívar (Venezuela)
Carlos Cotta, University of Málaga (Spain)
Richard Duro, Universidade da Coruña (Spain)
Marcos Faundez-Zanuy, Univ. Politècnica de Catalunya (Spain)
Carlos Garcia Puntonet, Universidad de Granada (Spain)
Gonzalo Joya, Universidad de Málaga (Spain)
Christian Jutten, Inst. National Polytechnique de Grenoble (France)
Dario Maravall, Universidad Politècnica de Madrid (Spain)
Eduardo Sánchez, Universidad de Santiago de Compostela (Spain)
José Santos Reyes, Universidade da Coruña (Spain)
Kate Smith, Monash University (Australia)
Reviewers

Igor Aleksander, Imperial College of Sci. Tech. and Medicine (UK)
José Ramón Álvarez-Sánchez, UNED (Spain)
Shun-ichi Amari, RIKEN (Japan)
A. Bahamonde, Universidad de Oviedo en Gijón (Spain)
José Barro Ameneiro, Univ. Santiago de Compostela (Spain)
J. Cabestany, Universidad Politécnica de Cataluña (Spain)
Marie Cottrell, Université Paris 1 (France)
Félix de la Paz López, UNED (Spain)
Ana E. Delgado García, UNED (Spain)
Ángel P. Del Pobil, Universidad Jaime I de Castellón (Spain)
José Dorronsoro, Universidad Autónoma de Madrid (Spain)
José Manuel Ferrández, Universidad Miguel Hernandez (Spain)
Kunihiko Fukushima, Osaka Univ (Japan)
Tamas Gedeon, Murdoch University (Australia)
Karl Goser, Univ. Dortmund (Germany)
Manuel Graña Romay, Universidad País Vasco (Spain)
J. Hérault, Inst. N. P. Grenoble (France)
Óscar Herreras, Hospital Ramón y Cajal (Spain)
Gonzalo Joya, Universidad de Málaga (Spain)
Christian Jutten, Inst. National Polytechnique de Grenoble (France)
Shahla Keyvan, University of Missouri-Rolla (USA)
Daniel Mange, IN-Ecublens (Switzerland)
Darío Maravall, Universidad Politécnica de Madrid (Spain)
Eve Marder, Brandeis University (USA)
José Mira, UNED (Spain)
J.M. Moreno Aróstegui, Univ. Politécnica de Cataluña (Spain)
Christian W. Omlin, University of Western Cape South (Africa)
Julio Ortega Lopera, Universidad de Granada (Spain)
F.J. Pelayo, Universidad de Granada (Spain)
Franz Pichler, Johannes Kepler University (Austria)
Alberto Prieto Espinosa, Universidad de Granada (Spain)
Leonardo Maria Reyneri, Politecnico di Torino (Italy)
John Rinzel, New York University (USA)
J.V. Sánchez-Andrés, Universidad de Alicante (Spain)
Francisco Sandoval, Universidad de Málaga (Spain)
J.A. Sigüenza, Universidad Autónoma de Madrid (Spain)
M. Verleysen, Université Catholique de Louvain (Belgium)
Table of Contents, Part II

Bio-inspired Systems and Engineering

From Embryonics to POEtic Machines .. 1
* D. Mange, A. Stauffer, G. Tempesti, and C. Teuscher
Design and Codesign of Neuro-Fuzzy Hardware 14
* L.M. Reyneri
A Field-Programmable Conductance Array IC
for Biological Neurons Modeling 31
 * V. Douence, S. Renaud-Le Masson, S. Saïghi, and G. Le Masson
A 2-by-n Hybrid Cellular Automaton Implementation
Using a Bio-Inspired FPGA ... 39
 * H.F. Restrepo and D. Mange
Parametric Neurocontroller for Positioning of an Anthropomorphic Finger
Based on an Oponent Driven-Tendon Transmission System 47
 * J.I. Mulero, J. Feliú Batlle, and J. López Coronado
An Integration Principle for Multimodal Sensor Data Based
on Temporal Coherence of Self-Organized Patterns. 55
 * E.I. Barakova
Simultaneous Parallel Processing of Object and Position
by Temporal Correlation .. 64
 * L.F. Lago-Fernández and G. Deco

Methodology for Nets Design, Nets Simulation and Implementation

NeuSim: A Modular Neural Networks Simulator for Beowulf Clusters 72
 * C.J. García Orellana, R. Gallardo Caballero,
 H.M. González Velasco, F.J. López Atigüé
Curved Kernel Neural Network for Functions Approximation 80
 * P. Bourret and B. Pelletier
Repeated Measures Multiple Comparison Procedures Applied
to Model Selection in Neural Networks 88
 * E. Guerrero Vázquez, A. Yañez Escolano, P. Galindo Riano,
 J. Pizarro Junquera
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extension of HUMANN for Dealing with Noise and with Classes of Different Shape and Size: A Parametric Study</td>
<td>96</td>
</tr>
<tr>
<td>P. García Baez, C.P. Suárez Araujo, and P. Fernández López</td>
<td></td>
</tr>
<tr>
<td>Evenet 2000: Designing and Training Arbitrary Neural Networks in Java</td>
<td>104</td>
</tr>
<tr>
<td>Neyman-Pearson Neural Detectors</td>
<td>111</td>
</tr>
<tr>
<td>D. Andina and J.L. Sanz-González</td>
<td></td>
</tr>
<tr>
<td>Distance between Kohonen Classes Visualization Tool to Use SOM in Data Set Analysis and Representation</td>
<td>119</td>
</tr>
<tr>
<td>P. Roussel and C. Gainot</td>
<td></td>
</tr>
<tr>
<td>Optimal Genetic Representation of Complete Strictly-Layered Feedforward Neural Networks</td>
<td>127</td>
</tr>
<tr>
<td>S. Raptis, S. Tzafestas, and H. Karagianni</td>
<td></td>
</tr>
<tr>
<td>Assessing the Noise Immunity of Radial Basis Function Neural Networks</td>
<td>136</td>
</tr>
<tr>
<td>J.L. Bernier, J. González, A. Cañas, and J. Ortega</td>
<td></td>
</tr>
<tr>
<td>Analyzing Boltzmann Machine Parameters for Fast Convergence</td>
<td>144</td>
</tr>
<tr>
<td>F.J. Salcedo, J. Ortega, and A. Prieto</td>
<td></td>
</tr>
<tr>
<td>A Penalization Criterion Based on Noise Behaviour for Model Selection</td>
<td>152</td>
</tr>
<tr>
<td>J. Pizarro Junquera, P. Galindo Riaño, E. Guerrero Vázquez, and A. Yañez Escolano</td>
<td></td>
</tr>
<tr>
<td>Image Processing</td>
<td></td>
</tr>
<tr>
<td>Wood Texture Analysis by Combining the Connected Elements Histogram and Artificial Neural Networks</td>
<td>160</td>
</tr>
<tr>
<td>M.A. Patricio Guisado and D. Maravall Gómez-Allende</td>
<td></td>
</tr>
<tr>
<td>Dynamic Topology Networks for Colour Image Compression</td>
<td>168</td>
</tr>
<tr>
<td>E. López-Rubio, J. Muñoz-Pérez, and J.A. Gómez-Ruiz</td>
<td></td>
</tr>
<tr>
<td>Analysis on the Viewpoint Dependency in 3-D Object Recognition by Support Vector Machines</td>
<td>176</td>
</tr>
<tr>
<td>T. Hayasaka, E. Ohnishi, S. Nakauchi, and S. Usui</td>
<td></td>
</tr>
<tr>
<td>A Comparative Study of Two Neural Models for Cloud Screening of Iberian Peninsula Meteosat Images</td>
<td>184</td>
</tr>
<tr>
<td>M. Macías Macías, F.J. López Algué, A. Serrano Pérez, and A. Astilleros Vivas</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>A Growing Cell Neural Network Structure for Off-Line Signature Recognition</td>
<td>192</td>
</tr>
<tr>
<td>K. Toscano-Medina, G. Sanchez-Perez, M. Nakano-Miyatake, and H. Perez-Meana</td>
<td></td>
</tr>
<tr>
<td>ZISC-036 Neuro-processor Based Image Processing</td>
<td>200</td>
</tr>
<tr>
<td>K. Madani, G. de Trémiolles, and P. Tannhof</td>
<td></td>
</tr>
<tr>
<td>Self-Organizing Map for Hyperspectral Image Analysis</td>
<td>208</td>
</tr>
<tr>
<td>P. Martínez, P.L. Aguilar, R.M. Pérez, M. Linaje, J.C. Preciado, and A. Plaza</td>
<td></td>
</tr>
<tr>
<td>Classification of the Images of Gene Expression Patterns</td>
<td>219</td>
</tr>
<tr>
<td>Using Neural Networks Based on Multi-valued Neurons</td>
<td></td>
</tr>
<tr>
<td>I. Aizenberg, E. Myasnikova, and M. Samsonova</td>
<td></td>
</tr>
<tr>
<td>Image Restoration Using Neural Networks</td>
<td>227</td>
</tr>
<tr>
<td>S. Ghennam and K. Benmahammed</td>
<td></td>
</tr>
<tr>
<td>Automatic Generation of Digital Filters by NN Based Learning:</td>
<td>235</td>
</tr>
<tr>
<td>An Application on Paper Pulp Inspection</td>
<td></td>
</tr>
<tr>
<td>P. Campoy-Cervera, D.F. Muñoz García, D. Peña, and J.A. Calderón-Martínez</td>
<td></td>
</tr>
<tr>
<td>Image Quality Enhancement for Liquid Bridge Parameter Estimation</td>
<td>246</td>
</tr>
<tr>
<td>with DTCNN</td>
<td></td>
</tr>
<tr>
<td>M.A. Jaramillo, J. Álvaro Fernández, J.M. Montanero, and F. Zayas</td>
<td></td>
</tr>
<tr>
<td>Neural Network Based on Multi-valued Neurons: Application</td>
<td>254</td>
</tr>
<tr>
<td>in Image Recognition, Type of Blur and Blur Parameters Identification</td>
<td></td>
</tr>
<tr>
<td>I. Aizenberg, N. Aizenberg, and C. Butakoff</td>
<td></td>
</tr>
<tr>
<td>Analyzing Wavelets Components to Perform Face Recognition</td>
<td>262</td>
</tr>
<tr>
<td>P. Isasi, M. Velasco, and J. Segovia</td>
<td></td>
</tr>
<tr>
<td>Man-Machine Voice Interface</td>
<td>271</td>
</tr>
<tr>
<td>Using a Commercially Available Neural Chip</td>
<td></td>
</tr>
<tr>
<td>N.J. Medrano-Marqués and B. Martín-del-Brío</td>
<td></td>
</tr>
<tr>
<td>Partial Classification in Speech Recognition Verification</td>
<td>279</td>
</tr>
<tr>
<td>G. Hernández Ábrego and I. Torres Sánchez</td>
<td></td>
</tr>
<tr>
<td>Speaker Recognition Using Gaussian Mixtures Model</td>
<td>287</td>
</tr>
<tr>
<td>E. Simancas-Acevedo, A. Kurematsu, M. Nakano Miyatake, and H. Perez-Meana</td>
<td></td>
</tr>
<tr>
<td>A Comparative Study of ICA Filter Structures Learnt from Natural and Urban Images</td>
<td>295</td>
</tr>
<tr>
<td>C. Ziegaus and E.W. Lang</td>
<td></td>
</tr>
</tbody>
</table>
Neural Edge Detector –
A Good Mimic of Conventional One Yet Robust against Noise 303
K. Suzuki, I. Horiba, and N. Sugie

Neural Networks for Image Restoration from the Magnitude
of Its Fourier Transform .. 311
A. Burian, J. Saarinen, and P. Kuosmanen

Medical Applications

An Automatic System for the Location of the Optic Nerve Head
from 2D Images .. 319
M. Bachiller, M. Rincón, J. Mira, and J. García-Feijó

Can ICA Help Classify Skin Cancer and Benign Lesions? 328
C. Mies, C. Bauer, G. Ackermann, W. Bäumler, C. Abels,
C.G. Puntonet, M. Rodríguez-Alvarez, and E.W. Lang

An Approach Fractal and Analysis of Variogram for Edge Detection
of Biomedical Images ... 336
L. Hamami and N. Lassouaoui

Some Examples for Solving Clinical Problems Using Neural Networks. 345
A.J. Serrano, E. Soria, G. Camps, J.D. Martín, and N.V. Jiménez

Medical Images Analysis: An Application of Artificial Neural Networks
in the Diagnosis of Human Tissues 353
E. Restum Antonio, L. Biondi Neto, V. De Roberto Junior,
and F. Hideo Fukuda

Feature Selection, Ranking of Each Feature and Classification
for the Diagnosis of Community Acquired Legionella Pneumonia 361
E. Monte, J. Solé i Casals, J.A. Fiz, and N. Sopena

Rotation-Invariant Image Association for Endoscopic Positional
Identification Using Complex-Valued Associative Memories 369
H. Aoki, E. Watanabe, A. Nagata, and Y. Kosugi

A Multi Layer Perceptron Approach for Predicting and Modeling
the Dynamical Behavior of Cardiac Ventricular Repolarisation 377
R. El Dajani, M. Miquel, and P. Rubel

Detection of Microcalcifications in Mammograms by the Combination
of a Neural Detector and Multiscale Feature Enhancement 385
D. Andina and A. Vega-Corona
An Auto-learning System for the Classification of Fetal Heart Rate Decelerative Patterns ... 393
 B. Guijarro Berdiñas, A. Alonso-Betanzos, O. Fontenla-Romero,
 O. García-Dans, and N. Sánchez Maroño

Neuro-Fuzzy Nets in Medical Diagnosis: The DIAGEN Case Study of Glaucoma ... 401
 E. Carmona, J. Mira, J. García Feijó, and M.G. de la Rosa

Robotics

Evolving Brain Structures for Robot Control 410
 F. Pasemann, U. Steinmetz, M. Hülse, and B. Lara

A Cuneate-Based Network and Its Application as a Spatio-Temporal Filter in Mobile Robotics 418
 E. Sánchez, M. Mucientes, and S. Barro

An Application of Fuzzy State Automata: Motion Control of an Hexapod Walking Machine ... 426
 D. Morano and L.M. Reyneri

Neural Adaptive Force Control for Compliant Robots 436
 N. Saadia, Y. Amirat, J. Pontnaut, and A. Ramdane-Cherif

Reactive Navigation Using Reinforcement Learning Techniques in Situations of POMDPs ... 444
 P. Puliti, G. Tascini, and A. Montesanto

Landmark Recognition for Autonomous Navigation Using Odometric Information and a Network of Perceptrons 451
 J. de Lope Asiaín and D. Maravall Gómez-Allende

Topological Maps for Robot’s Navigation: A Conceptual Approach 459
 F. de la Paz López, and J.R. Álvarez-Sánchez

Information Integration for Robot Learning Using Neural Fuzzy Systems ... 468
 C. Zhou, Y. Yang, and J. Kanniah

Incorporating Perception-Based Information in Reinforcement Learning Using Computing with Words 476
 C. Zhou, Y. Yang, and X. Jia

Cellular Neural Networks for Mobile Robot Vision 484
 M. Balsi, A. Maraschini, G. Apicella, S. Luengo, J. Solsona,
 and X. Vilasís-Cardona

Learning to Predict Variable-Delay Rewards and Its Role in Autonomous Developmental Robotics 492
 A. Pérez-Uribe and M. Courant
XVI Table of Contents, Part II

Robust Chromatic Identification and Tracking 500
 J. Ramírez and G. Grittani

Sequence Learning in Mobile Robots Using Avalanche Neural Networks . 508
 G. Quero and C. Chang

Investigating Active Pattern Recognition in an Imitative Game 516
 S. Moga, P. Gaussier, and M. Quoy

Towards an On-Line Neural Conditioning Model for Mobile Robots 524
 E. Şahin

General Applications

A Thermocouple Model Based on Neural Networks 531
 N. Medraño-Marqués, R. del-Hoyo-Alonso, and B. Martín-del-Brío

Improving Biological Sequence Property Distances
Using a Genetic Algorithm .. 539
 O.M. Perez, F.J. Marin, and O. Trelles

Data Mining Applied to Irrigation Water Management 547
 J.A. Botía, A.F. Gómez Skarmeta, M. Valdés, and A. Padilla

Classification of Specular Object Based on Statistical Learning Theory ... 555
 T.S. Yun

On the Application of Heteroassociative Morphological Memories
 to Face Localization .. 563
 B. Raducanu and M. Graña

Early Detection and Diagnosis of Faults in an AC Motor
 Using Neuro Fuzzy Techniques: FasArt+ Fuzzy k Nearest Neighbors 571
 J. Juez, G.I. Sainz, E.J. Moya, and J.R. Perán

Knowledge-Based Neural Networks for Modelling Time Series 579
 J. van Zyl and C.W. Omlin

Using Artificial Neural Network to Define Fuzzy Comparators
 in FSQL with the Criterion of Some Decision-Maker 587
 R. Carrasco, J. Galindo, and A. Vila

Predictive Classification for Integrated Pest Management by Clustering
 in NN Output Space ... 595
 M. Salmerón, D. Guidotti, R. Petacchi, and L.M. Regneri

Blind Source Separation in the Frequency Domain: A Novel Solution
 to the Amplitude and the Permutation Indeterminacies 603
 A. Dapena and L. Castedo
Table of Contents, Part II XVII

Evaluation, Classification and Clustering with Neuro-Fuzzy Techniques in Integrate Pest Management ... 611
 E. Bellei, D. Guidotti, R. Petacchi, L.M. Reyneri, and I. Rizzi

Inaccessible Parameters Monitoring in Industrial Environment: A Neural Based Approach ... 619
 K. Madani and I. Berechet

Autoorganized Structures for Extraction of Perceptual Primitives 628
 M. Penas, M.J. Carreira, and M.G. Penedo

Real-Time Wavelet Transform for Image Processing on the Cellular Neural Network Universal Machine 636
 V.M. Preciado

OBLIC: Classification System Using Evolutionary Algorithm 644
 J.L. Alvarez, J. Mata, and J.C. Riquelme

Design of a Pre-processing Stage for Avoiding the Dependence on TSNR of a Neural Radar Detector .. 652
 P. Jarabo Amores, M. Rosa Zurera, and F. López Ferreras

Foetal Age and Weight Determination Using a Lateral Interaction Inspired Net ... 660
 A. Fernández-Caballero, J. Mira, F.J. Gómez, and M.A. Fernández

Inference of Stochastic Regular Languages through Simple Recurrent Networks with Time Dealy's 671
 G.A. Casañ and M.A. Castaño

Is Neural Network a Reliable Forecaster on Earth? A MARS Query! 679
 A. Abraham and D. Steinberg

Character Feature Extraction Using Polygonal Projection Sweep (Contour Detection) ... 687
 R.J. Rodrigues, G.K. Vianna, and A.C.G. Thomé

Using Contextual Information to Selectively Adjust Preprocessing Parameters ... 696
 P. Neskoovic and L.N. Cooper

Electric Power System’s Stability Assessment and Online-Provision of Control Actions Using Self-Organizing Maps 704
 C. Leder and C. Rehtanz

Neural Networks for Contingency Evaluation and Monitoring in Power Systems .. 711
 F. García-Lagos, G. Joya, F.J. Marín, and F. Sandoval
Hybrid Framework for Neuro-dynamic Programming Application to Water Supply Networks ... 719
M. Damas, M. Salmerón, J. Ortega, and G. Olivares

Classification of Disturbances in Electrical Signals Using Neural Networks ... 728
C. León, A. López, J.C. Montaño, and Í. Monedero

Neural Classification and “Traditional” Data Analysis: An Application to Households’ Living Conditions 738
S. Ponthieux and M. Cottrell

Nonlinear Synthesis of Vowels in the LP Residual Domain with a Regularized RBF Network .. 746
E. Rank and G. Kabin

Nonlinear Vectorial Prediction with Neural Nets 754
M. Faíndez-Zanuy

Separation of Sources Based on the Partitioning of the Space of Observations .. 762
M. Rodríguez-Álvarez, C.G. Puntonet, and I. Rojas

Adaptive ICA with Order Statistics in Multidimensional Scenarios 770
Y. Blanco, S. Zazo, and J.M. Paez-Borrullo

Pattern Repulsion Revisited ... 778
Fabian J. Theis, C. Bauer, C. Puntonet, and E.W. Lang

The Minimum Entropy and Cumulants Based Contrast Functions for Blind Source Extraction .. 786
S. Cruces, A. Cichocki, and S.-I. Amari

Feature Extraction in Digital Mammography: An Independent Component Analysis Approach 794
A. Koutras, I. Christoyianni, E. Dermatas, and G. Kokkinakis

Blind Source Separation in Convolutive Mixtures: A Hybrid Approach for Colored Sources ... 802
F. Abrard and Y. Deville

A Conjugate Gradient Method and Simulated Annealing for Blind Separation of Sources .. 810
R. Martín-Clemente, C.G. Puntonet, and J.I. Acha

The Problem of Overlearning in High-Order ICA Approaches: Analysis and Solutions ... 818
J. Särelä and R. Vigário
Equi-convergence Algorithm for Blind Separation of Sources with Arbitrary Distributions 826
 L.-Q. Zhang, S. Amari, and A. Cichocki

Separating Convolution Mixture by Mutual Information Minimization .. 834
 M. Babaie-Zadeh, C. Jutten, and K. Nayebi

Author Index ... 843
Table of Contents, Part I

Foundations of Connectionism and Biophysical Models of Neurons

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dendrites: The Last-Generation Computers</td>
<td>1</td>
</tr>
<tr>
<td>O. Herreras, J.M. Ibarz, L. López-Aguado, and P. Varona</td>
<td></td>
</tr>
<tr>
<td>Homogeneity in the Electrical Activity Pattern as a Function of Intercellular Coupling in Cell Networks</td>
<td>14</td>
</tr>
<tr>
<td>E. Andreu, R. Pomares, B. Soria, and J.V. Sanchez-Andres</td>
<td></td>
</tr>
<tr>
<td>A Realistic Computational Model of the Local Circuitry of the Cuneate Nucleus</td>
<td>21</td>
</tr>
<tr>
<td>E. Sánchez, S. Barro, J. Mariño, and A. Canedo</td>
<td></td>
</tr>
<tr>
<td>Algorithmic Extraction of Morphological Statistics from Electronic Archives of Neuroanatomy</td>
<td>30</td>
</tr>
<tr>
<td>R. Scorcioni and G.A. Ascoli</td>
<td></td>
</tr>
<tr>
<td>What Can We Compute with Lateral Inhibition Circuits?</td>
<td>38</td>
</tr>
<tr>
<td>J. Mira and A.E. Delgado</td>
<td></td>
</tr>
<tr>
<td>Neuronal Models with Current Inputs</td>
<td>47</td>
</tr>
<tr>
<td>J. Feng</td>
<td></td>
</tr>
<tr>
<td>Decoding the Population Responses of Retinal Ganglion Cells</td>
<td>55</td>
</tr>
<tr>
<td>Using Information Theory</td>
<td></td>
</tr>
<tr>
<td>J.M. Ferrández, M. Bougard, F. García de Quirós, J.A. Bolea, J. Ammermüller, R.A. Normann, and E. Fernández</td>
<td></td>
</tr>
<tr>
<td>Numerical Study of Effects of Co-transmission by Substance P and Acetylcholine on Synaptic Plasticity in Myenteric Neurons</td>
<td>63</td>
</tr>
<tr>
<td>R. Miftakov and J. Christensen</td>
<td></td>
</tr>
<tr>
<td>Neurobiological Modeling of Bursting Response During Visual Attention</td>
<td>72</td>
</tr>
<tr>
<td>R. Rajimehr and L. Montaser Kouhsari</td>
<td></td>
</tr>
<tr>
<td>Sensitivity of Simulated Striate Neurons to Cross-Like Stimuli Based on Disinhibitory Mechanism</td>
<td>81</td>
</tr>
<tr>
<td>K.A. Saltykov and I.A. Shevelev</td>
<td></td>
</tr>
<tr>
<td>Synchronisation Mechanisms in Neuronal Networks</td>
<td>87</td>
</tr>
<tr>
<td>S. Chillemi, M. Barbi, and A. Di Garbo</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents, Part I

XXI

Detection of Oriented Repetitive Alternating Patterns in Color Images
(A Computational Model of Monkey Grating Cells) 95
 T. Lourens, H.G. Okuno, and H. Kitano

Synchronization in Brain – Assessment by Electroencephalographic Signals 108
 E. Pereda and J. Bhattacharya

Strategies for the Optimization of Large Scale Networks of Integrate
and Fire Neurons ... 117
 M.A. Sánchez-Montañés

Structural and Functional Models of Neurons

A Neural Network Model of Working Memory
(Processing of “What” and “Where” Information) 126
 T. Minami and T. Inui

Orientation Selectivity of Intracortical Inhibitory Cells in the Striate
Visual Cortex: A Computational Theory and a Neural Circuitry 134
 M.N. Shirazi

Interpreting Neural Networks in the Frame of the Logic of Lukasiewicz ... 142
 C. Moraga and L. Salinas

Time-Dispersive Effects in the J. Gonzalo’s Research
on Cerebral Dynamics ... 150
 I. Gonzalo and M.A. Porras

Verifying Properties of Neural Networks 158
 P. Rodrigues, J.F. Costa, and H.T. Siegelmann

Algorithms and Implementation Architectures
for Hebbian Neural Networks .. 166
 J.A. Berzal and P.J. Zufiria

The Hierarchical Neuro-Fuzzy BSP Model: An Application
in Electric Load Forecasting .. 174
 F.J. de Souza, M.M.R. Vellasco, and M.A.C. Pacheco

The Chemical Metaphor in Neural Computation 184
 J. Barahona da Fonseca, I. Barahona da Fonseca,
 C.P. Suárez Araujo, and J. Simões da Fonseca

The General Neural-Network Paradigm for Visual Cryptography 196
 T.-W. Yue and S. Chiang
II-DTB, Discrete Time Backpropagation with Product Units 207
 J. Santos and R.J. Duro

Neocognitron-Type Network for Recognizing Rotated and Shifted Patterns
with Reduction of Resources ... 215
 S. Satoh, S. Miyake, and H. Aso

Classification with Synaptic Radial Basis Units 223
 J.D. Buldain

A Randomized Hypercolumn Model and Gesture Recognition 235
 N. Tsuruta, Y. Yoshiki, and T. El. Tobely

Heterogeneous Kohonen Networks .. 243
 S. Negri, L.A. Belanche

Divided-Data Analysis in a Financial Case Classification
with Multi-dendritic Neural Networks ... 253
 J.D. Buldain

 A. Abraham

Generating Linear Regression Rules from Neural Networks
Using Local Least Squares Approximation 277
 R. Setiono

Speech Recognition Using Fuzzy Second-Order Recurrent Neural Networks 285
 A. Blanco, M. Delgado, M.C. Pegalajar, and I. Requena

A Measure of Noise Immunity for Functional Networks 293
 *E. Castillo, O. Fontenla-Romero, B. Guijarro-Berdiñas,
 and A. Alonso-Betanzos*

A Functional-Neural Network for Post-Nonlinear Independent Component Analysis 301
 *O. Fontenla Romero, B. Guijarro Berdiñas,
 and A. Alonso Betanzos*

Optimal Modular Feedfoward Neural Nets Based
on Functional Network Architectures .. 308
 A.S. Cafiño, J.M. Gutiérrez

Optimal Transformations in Multiple Linear Regression
Using Functional Networks ... 316
 E. Castillo, A.S. Hadi, and B. Lacruz
Learning and Other Plasticity Phenomena, and Complex Systems Dynamics

Generalization Error and Training Error at Singularities of Multilayer Perceptrons .. 325
S.-I. Amari, T. Ozeki, and H. Park

Bistable Gradient Neural Networks: Their Computational Properties 333
V. Chinarov and M. Menzinger

Inductive Bias in Recurrent Neural Networks 339
S. Snyders and C.W. Omlin

Accelerating the Convergence of EM-Based Training Algorithms for RBF Networks ... 347
M. Lázaro, I. Santamaría, and C. Pantaleón

Expansive and Competitive Neural Networks 355
J.A. Gomez-Ruiz, J. Muñoz-Perez, E. Lopez-Rubio, and M.A. Garcia-Bernal

Fast Function Approximation with Hierarchical Neural Networks and Their Application to a Reinforcement Learning Agent 363
J. Fischer, R. Breithaupt, and M. Bode

Two Dimensional Evaluation Reinforcement Learning 370
H. Okada, H. Yamakawa, and T. Omori

Comparing the Learning Processes of Cognitive Distance Learning and Search Based Agent .. 378
H. Yamakawa, Y. Miyamoto, and H. Okada

Selective Learning for Multilayer Feedforward Neural Networks 386
A.P. Engelbrecht

Connectionist Models of Cortico-Basal Ganglia Adaptive Neural Networks During Learning of Motor Sequential Procedures 394
J. Molina Vilaplana, J. Feliu Batlle, and J. López Coronado

Practical Consideration on Generalization Property of Natural Gradient Learning .. 402
H. Park

Novel Training Algorithm Based on Quadratic Optimisation Using Neural Networks .. 410
G. Arulampalam and A. Bouzerdoum

Non-symmetric Support Vector Machines 418
J. Feng
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gradient Learning in NLDA Networks</td>
<td>427</td>
</tr>
<tr>
<td>J.R. Dorronsoro, A. González, and C. Santa Cruz</td>
<td></td>
</tr>
<tr>
<td>AUTOWISARD: Unsupervised Modes for the WISARD</td>
<td>435</td>
</tr>
<tr>
<td>I. Wickert and F.M.G. França</td>
<td></td>
</tr>
<tr>
<td>Neural Steering: Difficult and Impossible Sequential Problems</td>
<td>442</td>
</tr>
<tr>
<td>G. Milligan, M.K. Weir, and J.P. Lewis</td>
<td></td>
</tr>
<tr>
<td>Analysis of Scaling Exponents of Waken and Sleeping Stage in EEG</td>
<td>450</td>
</tr>
<tr>
<td>J.-M. Lee, D.-J. Kim, I.-Y. Kim, and S.I. Kim</td>
<td></td>
</tr>
<tr>
<td>Model Based Predictive Control Using Genetic Algorithms.</td>
<td>457</td>
</tr>
<tr>
<td>X. Blasco, M. Martínez, J. Senent, and J. Sanchis</td>
<td></td>
</tr>
<tr>
<td>Nonlinear Parametric Model Identification with Genetic Algorithms.</td>
<td>466</td>
</tr>
<tr>
<td>Application to a Thermal Process.</td>
<td></td>
</tr>
<tr>
<td>X. Blasco, J.M. Herrero, M. Martínez, and J. Senent</td>
<td></td>
</tr>
<tr>
<td>A Comparison of Several Evolutionary Heuristics</td>
<td>474</td>
</tr>
<tr>
<td>for the Frequency Assignment Problem</td>
<td></td>
</tr>
<tr>
<td>C. Cotta and J.M. Troya</td>
<td></td>
</tr>
<tr>
<td>GA Techniques Applied to Contour Search in Images of Bovine Livestock</td>
<td>482</td>
</tr>
<tr>
<td>H.M. González Velasco, C.J. García Orellana,</td>
<td></td>
</tr>
<tr>
<td>M. Macías Macías, and M.I. Acvedo Sotoca</td>
<td></td>
</tr>
<tr>
<td>Richer Network Dynamics of Intrinsically Non-regular Neurons Measured</td>
<td>490</td>
</tr>
<tr>
<td>through Mutual Information</td>
<td></td>
</tr>
<tr>
<td>F. Rodríguez, P. Varona, R. Huerta, M.I. Rabinovich,</td>
<td></td>
</tr>
<tr>
<td>and H.D.I. Abarbanel</td>
<td></td>
</tr>
<tr>
<td>RBF Neural Networks, Multiobjective Optimization</td>
<td>498</td>
</tr>
<tr>
<td>and Time Series Forecasting</td>
<td></td>
</tr>
<tr>
<td>J. González, I. Rojas, H. Pomares, and J. Ortega</td>
<td></td>
</tr>
<tr>
<td>Evolving RBF Neural Networks</td>
<td>506</td>
</tr>
<tr>
<td>V.M. Rivas, P.A. Castillo, and J.J. Merelo</td>
<td></td>
</tr>
<tr>
<td>Evolutionary Cellular Configurations</td>
<td>514</td>
</tr>
<tr>
<td>for Designing Feed-Forward Neural Networks Architectures</td>
<td></td>
</tr>
<tr>
<td>G. Gutiérrez, P. Isasi, J.M. Molina, A. Sanchís, and I.M. Galván</td>
<td></td>
</tr>
<tr>
<td>A Recurrent Multivalued Neural Network for the N-Queens Problem</td>
<td>522</td>
</tr>
<tr>
<td>E. Mérida, J. Muñoz, and R. Benítez</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>A Novel Approach to Self-Adaptation of Neuro-Fuzzy Controllers</td>
<td>530</td>
</tr>
<tr>
<td>in Real Time</td>
<td></td>
</tr>
<tr>
<td>H. Pomares, I. Rojas, J. González, and M. Damas</td>
<td></td>
</tr>
<tr>
<td>Expert Mutation Operators for the Evolution</td>
<td>538</td>
</tr>
<tr>
<td>of Radial Basis Function Neural Networks</td>
<td></td>
</tr>
<tr>
<td>J. González, I. Rojas, H. Pomares, and M. Salmerón</td>
<td></td>
</tr>
<tr>
<td>Studying Neural Networks of Bifurcating Recursive Processing Elements</td>
<td>546</td>
</tr>
<tr>
<td>– Quantitative Methods for Architecture Design</td>
<td></td>
</tr>
<tr>
<td>and Performance Analysis</td>
<td></td>
</tr>
<tr>
<td>E. Del Moral Hernandez</td>
<td></td>
</tr>
<tr>
<td>Topology-Preserving Elastic Nets</td>
<td>554</td>
</tr>
<tr>
<td>V. Tereshko</td>
<td></td>
</tr>
<tr>
<td>Optimization with Linear Constraints in the Neural Network</td>
<td>561</td>
</tr>
<tr>
<td>M. Oota, N. Ishii, K. Yamauchi, and M. Nakamura</td>
<td></td>
</tr>
<tr>
<td>Optimizing RBF Networks with Cooperative/Competitive Evolution</td>
<td>570</td>
</tr>
<tr>
<td>of Units and Fuzzy Rules</td>
<td></td>
</tr>
<tr>
<td>A.J. Rivera, J. Ortega, I. Rojas, and A. Prieto</td>
<td></td>
</tr>
<tr>
<td>Study of Chaos in a Simple Discrete Recurrence Neural Network</td>
<td>579</td>
</tr>
<tr>
<td>J.D. Piñeiro, R.L. Marichal, L. Moreno, J.F. Sigut, and E.J. González</td>
<td></td>
</tr>
<tr>
<td>Genetic Algorithm versus Scatter Search</td>
<td>586</td>
</tr>
<tr>
<td>and Solving Hard MAX-W-SAT Problems</td>
<td></td>
</tr>
<tr>
<td>H. Drias</td>
<td></td>
</tr>
<tr>
<td>A New Approach to Evolutionary Computation:</td>
<td>594</td>
</tr>
<tr>
<td>Segregative Genetic Algorithms (SEGA)</td>
<td></td>
</tr>
<tr>
<td>M. Affenzeller</td>
<td></td>
</tr>
<tr>
<td>Evolution of Firms in Complex Worlds: Generalized NK Model</td>
<td>602</td>
</tr>
<tr>
<td>N. Jacoby</td>
<td></td>
</tr>
<tr>
<td>Learning Adaptive Parameters</td>
<td>612</td>
</tr>
<tr>
<td>with Restricted Genetic Optimization Method</td>
<td></td>
</tr>
<tr>
<td>S. Garrido and L. Moreno</td>
<td></td>
</tr>
<tr>
<td>Solving NP-Complete Problems with Networks</td>
<td>621</td>
</tr>
<tr>
<td>of Evolutionary Processors</td>
<td></td>
</tr>
<tr>
<td>J. Castellanos, C. Martín-Vide, V. Mitrana, and J.M. Sempere</td>
<td></td>
</tr>
<tr>
<td>Using SOM for Neural Network Visualization</td>
<td>629</td>
</tr>
<tr>
<td>G. Romero, P.A. Castillo, J.J. Merelo, and A. Prieto</td>
<td></td>
</tr>
</tbody>
</table>
Comparison of Supervised Self-Organizing Maps Using Euclidian or Mahalanobis Distance in Classification Context 637
F. Fessant, P. Aknin, L. Oukhellou, and S. Midenet

Introducing Multi-objective Optimization in Cooperative Coevolution of Neural Networks ... 645

STAR - Sparsity through Automated Rejection 653
R. Burbidge, M. Trotter, B. Buxton, and S. Holden

Ordinal Regression with K-SVCR Machines 661
C. Angulo and A. Catalá

Large Margin Nearest Neighbor Classifiers 669
S. Bermejo and J. Cabestany

Reduced Support Vector Selection by Linear Programs 677
W.A. Fellenz

Edge Detection in Noisy Images Using the Support Vector Machines 685
H. Gómez-Moreno, S. Maldonado-Bascón, and F. López Ferreras

Initialization in Genetic Algorithms for Constraint Satisfaction Problems 693
C.R. Vela, R. Varela, and J. Puente

Evolving High-Posterior Self-Organizing Maps 701
J. Muruzábal

Using Statistical Techniques to Predict GA Performance 709
R. Nogueras and C. Cotta

Multilevel Genetic Algorithm for the Complete Development of ANN 717
J. Dorado, A. Santos, and J.R. Rabuñal

Graph Based GP Applied to Dynamical Systems Modeling 725
A.M. López, H. López, and L. Sánchez

Nonlinear System Dynamics in the Normalisation Process of a Self-Organising Neural Network for Combinatorial Optimisation 733
T. Kwok and K.A. Smith

Continuous Function Optimisation via Gradient Descent on a Neural Network Approximation Function 741
K.A. Smith and J.N.D. Gupta

An Evolutionary Algorithm for the Design of Hybrid Fiber Optic-Coaxial Cable Networks in Small Urban Areas 749
P. Cortés, F. Guerrero, D. Canca, and J.M. García
Channel Assignment for Mobile Communications
Using Stochastic Chaotic Simulated Annealing 757
S. Li and L. Wang

Artificial Intelligence and Cognitive Processes

Seeing is Believing: Depictive Neuromodelling of Visual Awareness 765
I. Aleksander, H. Morton, and B. Dunmall

DIAGEN-WebDB: A Connectionist Approach
to Medical Knowledge Representation and Inference 772
J. Mira, R. Martínez, J.R. Álvarez, and A.E. Delgado

Conceptual Spaces as Voltage Maps 783
J. Aisbett and G. Gibbon

Determining Hyper-planes to Generate Symbolic Rules 791
G. Bologna

Automatic Symbolic Modelling of Co-evolutionarily Learned Robot Skills . 799
A. Ledezma, A. Berlanga, and R. Aler

ANNs and the Neural Basis for General Intelligence 807
J.G. Wallace and K. Bluff

Knowledge and Intelligence ... 814
J.C. Herrero

Conjecturing the Cognitive Plausibility of an ANN Theorem-Prover 822
I.M.O. Vilela and P.M.V. Lima

Author Index .. 831
Bio-Inspired Applications of Connectionism
Mira, J.; Prieto, A. (Eds.)
2001, LIV, 852 p., Softcover
ISBN: 978-3-540-42237-2