Editorial Policy

The series Lecture Notes in Physics (LNP), founded in 1969, reports new developments in physics research and teaching -- quickly, informally but with a high quality. Manuscripts to be considered for publication are topical volumes consisting of a limited number of contributions, carefully edited and closely related to each other. Each contribution should contain at least partly original and previously unpublished material, be written in a clear, pedagogical style and aimed at a broader readership, especially graduate students and nonspecialist researchers wishing to familiarize themselves with the topic concerned. For this reason, traditional proceedings cannot be considered for this series though volumes to appear in this series are often based on material presented at conferences, workshops and schools (in exceptional cases the original papers and/or those not included in the printed book may be added on an accompanying CD ROM, together with the abstracts of posters and other material suitable for publication, e.g. large tables, colour pictures, program codes, etc.).

Acceptance

A project can only be accepted tentatively for publication, by both the editorial board and the publisher, following thorough examination of the material submitted. The book proposal sent to the publisher should consist at least of a preliminary table of contents outlining the structure of the book together with abstracts of all contributions to be included. Final acceptance is issued by the series editor in charge, in consultation with the publisher, only after receiving the complete manuscript. Final acceptance, possibly requiring minor corrections, usually follows the tentative acceptance unless the final manuscript differs significantly from expectations (project outline). In particular, the series editors are entitled to reject individual contributions if they do not meet the high quality standards of this series. The final manuscript must be camera-ready, and should include both an informative introduction and a sufficiently detailed subject index.

Contractual Aspects

Publication in LNP is free of charge. There is no formal contract, no royalties are paid, and no bulk orders are required, although special discounts are offered in this case. The volume editors receive jointly 30 free copies for their personal use and are entitled, as are the contributing authors, to purchase Springer books at a reduced rate. The publisher secures the copyright for each volume. As a rule, no reprints of individual contributions can be supplied.

Manuscript Submission

The manuscript in its final and approved version must be submitted in camera-ready form. The corresponding electronic source files are also required for the production process, in particular the online version. Technical assistance in compiling the final manuscript can be provided by the publisher's production editor(s), especially with regard to the publisher's own Latex macro package which has been specially designed for this series.

Online Version/ LNP Homepage

LNP homepage (list of available titles, aims and scope, editorial contacts etc.):
http://www.springer.de/phys/books/lnpp/
LNP online (abstracts, full-texts, subscriptions etc.):
http://link.springer.de/series/lnpp/
Quantized Vortex Dynamics and Superfluid Turbulence
Preface

This book springs from the programme Quantized Vortex Dynamics and Superfluid Turbulence held at the Isaac Newton Institute for Mathematical Sciences (University of Cambridge) in August 2000. What motivated the programme was the recognition that two recent developments have moved the study of quantized vorticity, traditionally carried out within the low-temperature physics and condensed-matter physics communities, into a new era.

The first development is the increasing contact with classical fluid dynamics and its ideas and methods. For example, some current experiments with helium II now deal with very classical issues, such as the measurement of velocity spectra and turbulence decay rates. The evidence from these experiments and many others is that superfluid turbulence and classical turbulence share many features. The challenge is now to explain these similarities and explore the time scales and length scales over which they hold true. The observed classical aspects have also attracted attention to the role played by the flow of the normal fluid, which was somewhat neglected in the past because of the lack of direct flow visualization. Increased computing power is also making it possible to study the coupled motion of superfluid vortices and normal fluids. Another contact with classical physics arises through the interest in the study of superfluid vortex reconnections. Reconnections have been studied for some time in the contexts of classical fluid dynamics and magnetohydrodynamics (MHD), and it is useful to learn from the experience acquired in other fields.

The second development arises from atomic physics and is the discovery of Bose–Einstein condensation in confined clouds of alkali atoms. The study of superfluidity and quantized vorticity is now possible in a wide range of other systems besides helium II. The rapid progress in this area has given momentum to the use of the Gross–Pitaevskii Equation or Nonlinear Schroedinger Equation (NLSE). Researchers have become more aware of the approximations and limitations involved in the NLSE model, but also of its range of validity and great power of prediction. The use of the NLSE has become more established, and the NLSE is proving to be a powerful tool for modeling problems such as vortex nucleation, reconnections and even turbulence.

A further development arises from the results of preliminary theory and experiments in turbulent Helium 3 which suggest that there are significant differences with turbulence in Helium 4 and these are likely to be explored in the future.
It is apparent from this background that the contributions to this book come from investigators with a wide range of backgrounds and expertise: condensed-matter physics and low-temperature physics, classical fluid dynamics and applied mathematics, MHD, atomic physics, and engineering (for the applications of helium II as a cryogenic coolant).

The book is divided into topical chapters. Each chapter begins with one or two introductory review articles, which are suitable for students and new investigators interested in entering the field. The introductory articles are followed by shorter, more specialized papers.

Chapter 1 introduces us to the problem of quantized vorticity and superfluid turbulence, and it summarizes the key aspects and problems which are currently studied. Chapter 2 is devoted to turbulence experiments. Chapter 3 considers the fundamental problem of friction and vortex dynamics. The theory of superfluid turbulence and the interpretation of the experimental results is the subject of Chap. 4. Chapter 5 is devoted to the application of the NLSE model to superfluidity and vortices. Chapter 6 moves away from helium and considers Bose–Einstein Condensation and vortices in the context of alkali atoms. Chapter 7 is concerned with some aspects of classical turbulence and MHD which are relevant in the study of superfluid turbulence. Finally, Chap. 8 deals with Helium 3 and other systems.

We are grateful for the support and encouragement of Professor Keith Moffatt, Director of the Newton Institute, and we would like to thank Tracey Andrew who helped in the preparation of the manuscripts for publication.

Newcastle, Eugene and Birmingham,
June 2001

Carlo Barenghi
Russ Donnelly
Joe Vinen
List of Contributors

C.S. Adams
Physics Department
University of Durham
Durham DH1 3LE, UK
c.adams@dur.ac.uk

C.F. Barenghi
University of Newcastle
Mathematics Department
Newcastle upon Tyne, NE1 7RU
UK
c.f.barenghi@ncl.ac.uk

N. Berloff
Mathematics Department
University of California
Los Angeles, CA 90095-1555, USA
nberloff@math.ucla.edu

R. Blossey
Department of Physics
University of Essen
45117 Essen, Germany
blossey@theo-phys.uni-essen.de

A. Brandenburg
NORDITA
Blegdamsvej 17
2100 Copenhagen, Denmark
brandenb@nordita.dk

H.P. Buechler
Theoretical Physics
ETH
8093 Zuerich, Switzerland
buechler@itp.phys.ethz.ch

R.J. Donnelly
Physics Department
University of Oregon
Eugene, OR 97403, USA
russ@vortex.uoregon.edu

L. Eaves
School of Physics and Astronomy
University of Nottingham
Nottingham NG7 2RD, UK
Laurence.Eaves@nottingham.ac.uk

A. Fetter
Geballe laboratory for Advanced Materials
Stanford University
Stanford, CA 94305-4045, USA
fetter@stanford.edu

K.L. Henderson
Faculty of Computer Studies and Mathematics
University of the West of England
Bristol BS16 1QY, UK
karen.henderson@uwe.ac.uk

D.D. Holm
Theoretical Division
Mail Stop B284
Los Alamos National Laboratory
Los Alamos NM 87545, USA
holm@lanl.gov
XX List of Contributors

G. Hornig
Dept. Theoretical Physics IV
Ruhr-Universitaet Bochum
44780 Bochum, Germany
gh@egal.tp4.ruhr-uni-bochum.de

C. Huepe
James Frank Institute
University of Chicago
5640 S. Ellis Avenue
Chicago, IL 60637, USA
cristian@eclectise.uchicago.edu

O. Idowu
Center for Turbulence Research
Stanford University
Stanford, CA 94305-3030, USA
idovu@nas.nasa.gov

D. Kivotides
Mathematics Department
University of Newcastle
Newcastle NE1 7RU, UK
demosthenes.kivotides@ncl.ac.uk

J. Koplik
Levich Institute, T-1M
City College of New York
New York, NY 10031, USA
koplik@sci.ccny.cuny.edu
koplik@lid3a0 engr.ccny.cuny.edu

M. Krusius
Low Temperature Laboratory
Helsinki University of Technology
02015 HUT
Finland
krusius@neuro.hut.fi

H. Kuratsuji
Department of Physics
Ritsumeikan University
Kusatsu City 525-8577, Japan
kra@se.ritsumei.ac.jp

M. Leadbeater
Physics Department
University of Durham
Durham DH1 3LE, UK
Mark.Leadbeater@durham.ac.uk

T. Lipniacki
Institute of Fundamental Technological Research
Świętokrzyska St. 21
00-049 Warsaw, Poland
tlipnia@ippt.gov.pl

P.V.E. McClintock
University of Lancaster
Physics Department
Lancaster LA1 4YB, UK
p.v.e.mcclintock@lancaster.ac.uk

S. Nazarenko
Mathematics Institute
University of Warwick
Coventry CV4 7AL, UK
snazar@math.warwick.ac.uk

S.K. Nemirovskii
Institute of Thermophysics
630090 Novosibirsk, Russia
nem@nsu.ru

J.J. Niemela
Physics Department
University of Oregon
Eugene, OR 97403, USA
joe@vortex.uoregon.edu

M. Niemetz
Institut für Experimentelle
und Angewandte Physik
Universität Regensburg
93040 Regensburg, Germany
michael.niemetz@physik.uni-regensburg.de
V. Penna
Dipartimento di Fisica
and INFM
Politecnico di Torino
C.so Duca degli Abruzzi 24
10129 Torino, Italy
penna@athena.polito.it

L.M. Pismen
Department of Chemical Engineering
and Minerva Center for Nonlinear
Physics of Complex Systems
Technion - Israel Institute
of Technology
32000 Haifa, Israel

S. Rica
CMM CNRS UCHILE
Av Blanco Encalada 2120
Santiago, Chile
rica@ens.fr
rica@dim.uchile.cl

L.R. Ricca
Mathematics Department
University College London
Gower Street
London WC1E 6BT, UK
ricca@math.ucl.ac.uk

P.H. Roberts
Mathematics Department
University of California
Los Angeles, CA 90095-1555, USA
roberts@math.ucla.edu

W. Schoepe
Institut für Experimentelle und
Angewandte Physik
Universität Regensburg
93040 Regensburg, Germany
wilfried.schoepe@
physik.uni-regensburg.de

B.K. Shivamoggi
University of Central Florida
Orlando, FL 32816, USA
ijjmms@pegasus.cc.ucf.edu

E. Sonin
Racah Institute of Physics
Hebrew University of Jerusalem
Givat Ram,
Jerusalem 91904, Israel
sonin@cc.huji.ac.il

L. Skrbek
KFNT MFF UK
Charles University
V Holesovickach 2
180 00 Prague 8, Czech Republic
skrbek@fzu.cz

B. Svistunov
Russian Research Center
Kurchatov Institute
123182 Moscow, Russia
svist@kurm.polyn.kiae.su

A. Tsinober
Faculty of Engineering
Tel Aviv University
Tel Aviv, Israel
tsinober@eng.tau.ac.il

M. Tsubota
Department of Physics
Osaka City University
Osaka 558-8585, Japan
tsubota@sci.osaka-cu.ac.jp

S.W. Van Sciver
National High Magnetic Field
Laboratory
Florida State University
Tallahassee FL 32310, USA
vnsciver@magnet.fsu.edu
É. Varoquaux
CNRS-Université Paris-Sud
Laboratoire de Physique des Solides
Bâtiment 510
F-91405 Orsay Cedex, France
varoquaux@drecam.saclay.cea.fr

W.F. Vinen
Physics Department

University of Birmingham
Birmingham B15 2TT, UK
w.f.vinen@bham.ac.uk

G. Williams
Department of Physics and Astronomy
University of California
Los Angeles, CA 90095, USA
gaw@ucla.edu
Quantized Vortex Dynamics and Superfluid Turbulence
Barenghi, C.F.; Donnelly, R.J.; Vinen, W.F. (Eds.)
2001, XXII, 458 p., Hardcover
ISBN: 978-3-540-42226-6