Contents

I. Modelling the Continuum
1. Scale, Model, and Validation 7
2. Concepts and Formulation .. 8
 2.1 The Main Idea ... 8
 2.2 Frame of Reference and Coordinate System 9
 2.3 Configurations of the System 10
 2.4 Material Frame Indifference 11
3. Lagrangian Description ... 12
 3.1 Definition .. 12
 3.2 Continuity Hypotheses .. 13
 3.3 Weakening of Continuity Hypotheses 15
 3.4 Physical Interpretation of the Lagrangian Description: Pathlines 16
 3.5 Streaklines ... 16
 3.6 Particle Velocity ... 17
 3.7 Generalised Reference Configuration 17
4. Eulerian Description .. 18
 4.1 Definition .. 18
 4.2 Determining Pathlines ... 19
 4.3 Streamlines .. 20
 4.4 Steady Motions ... 21
 4.5 Semi-Steady Motions .. 22
 4.6 Notation for Velocity .. 22
5. Remarks .. 23
Summary of Main Formulas ... 27
Exercises .. 28

II. Deformation
1. Transport, Transformation, and Deformation 37
2. Convective Transport in a Homogeneous Transformation 38
 2.1 Homogeneous Transformation 38
 2.2 Material Vector and Convective Transport 39
 2.3 Transport and Expansion of a Volume 40
 2.4 Transport of an Oriented Surface 42

3 Deformation in a Homogeneous Transformation 43
3.1 Expansion Tensor 43
3.2 Using the Expansion Tensor 45
3.3 Green–Lagrange Strain Tensor 48
3.4 Polar Factorisation 50

4 Deformation of the Continuum: General Case 51
4.1 Basic Principle: The Homogeneous Tangent Map 51
4.2 Transport Equations 53
4.3 Deformations 54
4.4 Displacement 54
4.5 Polar Factorisation and Rigid Body Transformation .. 55
4.6 Frame Indifference 56

5 Infinitesimal Transformations 57
5.1 Definition 57
5.2 Linearised Strain Tensor 57
5.3 Gradient of a Tensor Field on the Current Configuration 58

6 Geometrical Compatibility of a Linearised Strain Field 59
6.1 Statement of the Problem 59
6.2 Compatibility Conditions 60
6.3 Remarks 62
6.4 Application 64

7 Final Comments 65
7.1 Transformation and Deformation 65
7.2 Lagrangian Parametrisation Relative to a Generalised Configuration 65
7.3 Practical Investigation of Strains 66

Summary of Main Formulas 69
Exercises ... 71

III. Kinematics .. 81
1 Introduction .. 87
2 Lagrangian Kinematics of the Continuum 87
2.1 Convective Transport and Material Derivative 87
2.2 Lagrangian Strain Rate 89

3 Eulerian Kinematics of the Continuum 90
3.1 Motivation 90
3.2 Material Derivative of a Vector 90
3.3 Eulerian Strain Rate 91
3.4 Use of the Strain Rate Tensor 92
3.5 Spin Tensor. Rate of Volume Dilatation 95
3.6 Comparison with Linearised Strain for Infinitesimal Transformations 98
3.7 Geometrical Compatibility of a Strain Rate Field 99
3.8 Rigid Body Motion 99
Contents

5.2 Wrenches 161
5.3 Restriction of a Linear Form Defined on a Space of Virtual Motions to the Rigid Body Virtual Motions 162
5.4 Wrench of a Force System 162
5.5 Fields of Distributors and Wrenches. Differentiation . 163

6 General Results 165
 6.1 Defining the System and its Motions 165
 6.2 Virtual Work 166
 6.3 Law of Mutual Actions and Fundamental Law of Dynamics 166
 6.4 Remarks 167

7 Momentum Theorem. Kinetic Energy Theorem 168
 7.1 Definition of the System and its Motions 168
 7.2 Wrench of the Quantities of Acceleration. Momentum Wrench .. 168
 7.3 Conservation of Momentum 170
 7.4 Euler’s Theorem 171
 7.5 Kinetic Energy Theorem 172
 7.6 Discontinuous Real Velocity Field. Shock Waves 173

8 Looking Ahead .. 178
Summary of Main Formulas 179
Exercises ... 181

V. Modelling Forces in Continuum Mechanics 183
1 Statement of the Problem 189
2 Scalar Field Model of Internal Forces. Pressure 190
 2.1 Virtual Motions. Virtual Rate of Work by Quantities of Acceleration 190
 2.2 Virtual Rate of Work by External Forces 191
 2.3 Virtual Rate of Work by Internal Forces 194
 2.4 Equations of Motion 195
 2.5 Relevance of the Model. Pressure Field 198
 2.6 The Fundamental Law of Dynamics 199
 2.7 Discontinuous Virtual Velocity Field 199

3 Modelling Internal Forces by a Tensor Field. Stresses 202
 3.1 Virtual Motions. Virtual Rates of Work by Quantities of Acceleration and External Forces 202
 3.2 Virtual Rate of Work by Internal Forces 203
 3.3 Equations of Motion 204
 3.4 Remarks 206
 3.5 Cauchy Stress Tensor. Stress Vector 208
 3.6 Modelling Internal Forces Within the Continuum Using the Stress Vector 211
 3.7 Explicit Forms of the Equations of Motion 214
 3.8 Discontinuous Virtual Velocity Field 215
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9</td>
<td>Discontinuities in the Stress Field</td>
<td>218</td>
</tr>
<tr>
<td>3.10</td>
<td>Euler’s Theorem</td>
<td>222</td>
</tr>
<tr>
<td>3.11</td>
<td>Kinetic Energy Theorem</td>
<td>223</td>
</tr>
<tr>
<td>3.12</td>
<td>Rate of Work by Deformation</td>
<td>224</td>
</tr>
<tr>
<td>3.13</td>
<td>Geometrical Compatibility Revisited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A Weak Formulation</td>
<td>225</td>
</tr>
<tr>
<td>3.14</td>
<td>Weak Formulation of the Equations of Motion</td>
<td>225</td>
</tr>
<tr>
<td>3.15</td>
<td>Frame Indifference of the Cauchy Stress Tensor</td>
<td>226</td>
</tr>
<tr>
<td>4</td>
<td>Lagrangian Formulation of Stresses</td>
<td>226</td>
</tr>
<tr>
<td>4.1</td>
<td>Piola–Kirchhoff Stress Tensor</td>
<td>226</td>
</tr>
<tr>
<td>4.2</td>
<td>Piola–Lagrange Stress Tensor. Equations of Motion</td>
<td>230</td>
</tr>
<tr>
<td>5</td>
<td>Review and Prospects</td>
<td>232</td>
</tr>
<tr>
<td>5.1</td>
<td>Mechanicist and Physicist</td>
<td>232</td>
</tr>
<tr>
<td>5.2</td>
<td>Summary of Results</td>
<td>233</td>
</tr>
<tr>
<td>5.3</td>
<td>Micropolar Media</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>Summary of Main Formulas</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>240</td>
</tr>
<tr>
<td>VI.</td>
<td>Local Analysis of Stresses</td>
<td>249</td>
</tr>
<tr>
<td>1</td>
<td>Implementing the Notion of Stress</td>
<td>255</td>
</tr>
<tr>
<td>2</td>
<td>Some Practical Definitions</td>
<td>255</td>
</tr>
<tr>
<td>2.1</td>
<td>Dimensions and Units</td>
<td>255</td>
</tr>
<tr>
<td>2.2</td>
<td>Normal Stress and Shear Stress</td>
<td>256</td>
</tr>
<tr>
<td>2.3</td>
<td>Sign Convention. Physical Interpretation</td>
<td>258</td>
</tr>
<tr>
<td>2.4</td>
<td>Cauchy Reciprocal Theorem</td>
<td>258</td>
</tr>
<tr>
<td>2.5</td>
<td>Change of Basis</td>
<td>259</td>
</tr>
<tr>
<td>2.6</td>
<td>Principal Axes. Principal Stresses</td>
<td>262</td>
</tr>
<tr>
<td>2.7</td>
<td>Invariants of the Stress Tensor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Representation Theorem</td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>Deviatoric Stress Tensor</td>
<td>265</td>
</tr>
<tr>
<td>3</td>
<td>Mohr Representation</td>
<td>266</td>
</tr>
<tr>
<td>3.1</td>
<td>Mohr Representation</td>
<td>266</td>
</tr>
<tr>
<td>3.2</td>
<td>Mohr Circles</td>
<td>267</td>
</tr>
<tr>
<td>3.3</td>
<td>Description of Principal Circles</td>
<td>269</td>
</tr>
<tr>
<td>3.4</td>
<td>Practical Consequences</td>
<td>271</td>
</tr>
<tr>
<td>3.5</td>
<td>Examples of Stress States</td>
<td>271</td>
</tr>
<tr>
<td>4</td>
<td>Yield Conditions for Isotropic Materials</td>
<td>274</td>
</tr>
<tr>
<td>4.1</td>
<td>Presentation</td>
<td>274</td>
</tr>
<tr>
<td>4.2</td>
<td>General Principles</td>
<td>274</td>
</tr>
<tr>
<td>4.3</td>
<td>Tresca Yield Criterion</td>
<td>276</td>
</tr>
<tr>
<td>4.4</td>
<td>Von Mises Yield Criterion</td>
<td>277</td>
</tr>
<tr>
<td>5</td>
<td>Material Derivative of the Stress Tensor</td>
<td>278</td>
</tr>
<tr>
<td>5.1</td>
<td>Material Derivative</td>
<td>278</td>
</tr>
<tr>
<td>5.2</td>
<td>Intrinsic Derivative (Truesdell Rate)</td>
<td>279</td>
</tr>
<tr>
<td>5.3</td>
<td>Corotational Derivative (Jaumann Rate)</td>
<td>280</td>
</tr>
</tbody>
</table>
Summary of Main Formulas .. 282
Exercises ... 283

VII. Thermoelasticity ... 295
1 From Experience to a Constitutive Law 301
2 Experimental Observations 302
 2.1 Generalities ... 302
 2.2 Simple Tension Test 303
 2.3 Further Experimental Results 304
 2.4 Remarks .. 305
3 Thermodynamics of Continuous Media 306
 3.1 First Law: Energy Equation 306
 3.2 Second Law: Fundamental Inequality 311
 3.3 Lagrangian Expressions 313
4 Thermoelastic Constitutive Laws 315
 4.1 Elasticity Hypothesis 315
 4.2 Unconstrained Thermoelasticity 316
 4.3 Thermoelasticity with Internal Constraints 321
 4.4 Material Symmetries 324
 4.5 Isotropic Thermoelastic Material in the Reference Configuration 325
 4.6 Internal Constraints from the Eulerian Standpoint 327
5 Unconstrained Linear Thermoelasticity 328
 5.1 Introduction ... 328
 5.2 Physical Linearisation 328
 5.3 Isotropic Linear Thermoelastic Material 332
 5.4 Infinitesimal Transformation and Geometrical Linearisation 334
 5.5 Stability of Thermoelastic Materials 340
 5.6 Typical Values for Materials in Common Use 343
 5.7 Examples of Anisotropic Thermoelastic Materials 343
6 Historical Perspective 346
Summary of Main Formulas 349
Exercises ... 351

VIII. Thermoelastic Processes and Equilibrium 361
1 Quasi-Static Thermoelastic Processes 367
 1.1 The Need for a Constitutive Law 367
 1.2 Formulating the Quasi-Static Thermoelastic Problem 369
 1.3 Solving the Quasi-Static Thermoelastic Problem 372
 1.4 Some Examples of Boundary Conditions 374
2 Linearising the Quasi-Static Thermoelastic Process 376
 2.1 Linearisation Hypotheses 376
 2.2 The Principles of Linearisation 377
2.3 Usual Equations for Linearised Thermoelastic Processes 380
3 Linearised Quasi-Static Thermoelastic Processes 381
 3.1 Decoupling the Heat Problem 381
 3.2 Thermoelastic Equilibrium 381
 3.3 Uniqueness Theorem 382
 3.4 Natural Initial State and Principle of Superposition 382
 3.5 Nonzero Initial Self-Equilibrating Stress State 383
 3.6 Preloaded Initial State 383
4 Solution to the Thermoelastic Equilibrium Problem 385
 4.1 Statement of the Problem 385
 4.2 Statically Admissible Stress Fields.
 Kinematically Admissible Displacement Fields 386
 4.3 Thermoelastic Equilibrium
 and Associated Isothermal Elastic Equilibrium 389
 4.4 Solution Methods 391
5 Displacement Method 392
 5.1 Basic Principle 392
 5.2 Isothermal Equilibrium and Homogeneous
 Isotropic Materials, Navier Equation 393
 5.3 Strongly Heterogeneous Materials
 and Thermal Shocks 395
6 Stress Method .. 396
 6.1 Basic Principle 396
 6.2 Isothermal Equilibrium and Homogeneous
 Isotropic Materials, Beltrami–Michell Equations 398
 6.3 Strongly Heterogeneous Materials
 and Thermal Shocks 401
7 Torsion of a Cylindrical Rod 402
 7.1 Statement of the Problem 402
 7.2 Solution: Displacement Method 403
 7.3 Remarks .. 407
 7.4 Invariances 408
 7.5 Rod with Circular Cross Section 409
 7.6 Solution by the Stress Method 412
 7.7 Yield Point of the Rod in Torsion 413
8 Saint Venant Principle 416
Summary of Main Formulas 419
Exercises ... 423

IX. Classic Topics in Three-Dimensional Elasticity 429
 1 Introduction 435
 2 Tension–Compression of a Cylindrical Rod 436
 2.1 Statement of the Problem 436
 2.2 Form of the Solution 437
2.3 Remarks .. 438
2.4 Yield Point of the Rod
 in Simple Tension or Compression 440
2.5 Tension–Torsion of a Cylindrical Rod 440
3 Normal Bending of a Cylindrical Rod 442
 3.1 Statement of the Problem 442
 3.2 Form of the Solution 443
 3.3 Remarks 445
 3.4 Yield Point of the Rod in Normal Bending. 450
4 Off-Axis Bending of a Cylindrical Rod 451
 4.1 Bending Normal to the Oy Axis 451
 4.2 Off-Axis Bending. Statement of the Problem 452
 4.3 Form of the Solution 452
 4.4 Remarks 452
5 Bending of a Cylindrical Rod with Axial Loading ... 454
 5.1 Definition 454
 5.2 Solution and Remarks 454
 5.3 Saint Venant Problem 455
6 Elastic Equilibrium of a Hollow Sphere Under Pressure ... 456
 6.1 Statement of the Problem 456
 6.2 Form of the Solution 456
 6.3 Remarks 457
 6.4 Yield Point of a Hollow Sphere Under Pressure 460
7 Elastic Equilibrium of a Cylindrical Tube Under Pressure ... 461
 7.1 Statement of the Problem 461
 7.2 Form of the Solution 462
 7.3 Remarks 464
Summary of Main Formulas 465
Exercises ... 467

X. Variational Methods in Linearised Thermoelasticity 483
1 Direct Methods and Variational Methods 489
 1.1 Introduction 489
 1.2 Direct Methods of Solution 491
 1.3 Presentation of Variational Methods 492
 1.4 The Virtual Work Theorem 493
 1.5 Notions of Convexity 494
 1.6 Expressing the Linearised Thermoelastic
 Constitutive Law 496
2 Minimum of the Potential Energy 499
 2.1 Convexity of \(\mathcal{C}(S, \zeta, \zeta^d) \) 499
 2.2 Minimum Principle for Displacements 499
 2.3 Explicit Expressions 502
 2.4 Uniqueness of the Solution 502
 2.5 Thermoelastic Material with Internal Constraints ... 503
3 Minimum of the Complementary Energy 504
 3.1 Convexity of $S (F, S^1, T^i_1)$ 504
 3.2 Minimum Principle for Stresses 505
 3.3 Explicit Expressions ... 507
 3.4 Uniqueness of the Solution 508
 3.5 Combining Minimum Principles
 for Displacements and Stresses 509
 3.6 Thermoelastic Material with Internal Constraints 510
 3.7 Prestressed and Preloaded Initial Reference State 511

4 Variational Methods .. 512
 4.1 Converses to the Minimum Principles 512
 4.2 Variational Methods .. 514

5 Natural Initial State. Isothermal Equilibrium 519
 5.1 Expressions for the Elastic Energy 519
 5.2 Clapeyron Equation ... 520
 5.3 Example: Apparent Modulus
 of a Heterogeneous Cylinder 522
 5.4 The Maxwell–Betti Reciprocity Theorem 525

6 Self-Equilibrating Stress Fields. 526
 6.1 Self-Equilibrating Stress Fields for the Problem 526
 6.2 Minimum Complementary Energy
 and Minimum Potential Theorem 529
 6.3 Remarks ... 530

7 Parametric Problems ... 531
 7.1 Aim of the Study ... 531
 7.2 Statically Admissible and Kinematically Admissible
 Fields for the Parametric Problem 532
 7.3 Self-Equilibrating Stress Fields
 for the Parametric Problem 535
 7.4 Examples of Parametric Problems 536

8 Energy Theorems for Parametric Thermoelastic Equilibrium 541
 8.1 Castigliano’s Theorem .. 541
 8.2 Minimum Potential Theorem 545
 8.3 Isothermal Equilibrium from the Natural Initial State
 in Linear Elasticity .. 549

9 Conclusion ... 550
Summary of Main Formulas .. 551
Exercises ... 555

XI. Statics of One-Dimensional Media 569
 1 The Problem of One-Dimensional Modelling 577
 2 Statics of Wires .. 579
 2.1 Geometrical Model. Real Motions 579
 2.2 Vector Space of Virtual Motions 580
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>Virtual Rate of Work by External Forces</td>
</tr>
<tr>
<td>2.4</td>
<td>Virtual Rate of Work by Internal Forces</td>
</tr>
<tr>
<td>2.5</td>
<td>Equilibrium Equations</td>
</tr>
<tr>
<td>2.6</td>
<td>Consistency of the Model. Physical Interpretation</td>
</tr>
<tr>
<td>2.7</td>
<td>Discontinuities in the Internal Force Field</td>
</tr>
<tr>
<td>2.8</td>
<td>Integrating the Equilibrium Equations</td>
</tr>
<tr>
<td>2.9</td>
<td>Discontinuities in the Virtual Velocity Field</td>
</tr>
<tr>
<td>2.10</td>
<td>Relevance of the Model</td>
</tr>
<tr>
<td>3.1</td>
<td>Guiding Ideas</td>
</tr>
<tr>
<td>3.2</td>
<td>Geometrical Model. Real Motions</td>
</tr>
<tr>
<td>3.3</td>
<td>Vector Space of Virtual Motions</td>
</tr>
<tr>
<td>3.4</td>
<td>Virtual Rate of Work by External Forces</td>
</tr>
<tr>
<td>3.5</td>
<td>Virtual Rate of Work by Internal Forces</td>
</tr>
<tr>
<td>3.6</td>
<td>Equilibrium Equations</td>
</tr>
<tr>
<td>3.7</td>
<td>Consistency of the Model. Physical Interpretation</td>
</tr>
<tr>
<td>3.8</td>
<td>Discontinuities in the Internal Force Field</td>
</tr>
<tr>
<td>3.9</td>
<td>Integrating the Equilibrium Equations</td>
</tr>
<tr>
<td>3.10</td>
<td>Discontinuities in the Virtual Motion</td>
</tr>
<tr>
<td>3.11</td>
<td>Relevance of the Model</td>
</tr>
<tr>
<td>3.12</td>
<td>Comparing One-Dimensional and Three-Dimensional Models</td>
</tr>
<tr>
<td>3.13</td>
<td>The Navier–Bernoulli Condition</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>4.2</td>
<td>Endpoint and Support Boundary Conditions</td>
</tr>
<tr>
<td>4.3</td>
<td>Boundary Conditions at Assembly Joints</td>
</tr>
<tr>
<td>4.4</td>
<td>Connections and Supports</td>
</tr>
<tr>
<td>4.5</td>
<td>Static Analysis of Structures</td>
</tr>
<tr>
<td>4.6</td>
<td>Kinematic Analysis of Structures</td>
</tr>
<tr>
<td>4.7</td>
<td>Plane Structures Loaded In-Plane</td>
</tr>
<tr>
<td>Summary of Main Formulas</td>
<td></td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
</tr>
</tbody>
</table>

XII. Thermoelastic Structural Analysis

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Thermoelastic Behaviour of the One-Dimensional Medium</td>
</tr>
<tr>
<td>2.1</td>
<td>Formulating a Constitutive Law</td>
</tr>
<tr>
<td>2.2</td>
<td>Infinitesimal Transformation. Displacement and Strain Distributors</td>
</tr>
<tr>
<td>2.3</td>
<td>Virtual Work Theorem</td>
</tr>
<tr>
<td>2.4</td>
<td>Guiding Ideas</td>
</tr>
<tr>
<td>2.5</td>
<td>Isothermal Elastic Behaviour of a Straight Beam Element from the Natural Initial State</td>
</tr>
</tbody>
</table>
2.6 Thermoelastic Behaviour of a Straight Beam Element in a Prestressed Initial State .. 663
2.7 Thermoelastic Behaviour of the One-Dimensional Medium in Structural Analysis 665
2.8 Extensions ... 667
3 Linearised Thermoelastic Equilibrium of One-Dimensional Structures .. 667
3.1 Small Perturbation Hypothesis .. 667
3.2 Statically Determinate Problems 668
3.3 Statically Indeterminate Problems 668
3.4 Main Formulas .. 669
3.5 Plane Structures Loaded In-Plane 670
3.6 Straight Beams Loaded In-Plane .. 672
4 Example Applications .. 674
4.1 Statically Determinate Problems 674
4.2 Statically Indeterminate Problems 676
5 Conclusion .. 678
Summary of Main Formulas .. 680
Exercises .. 682

Appendices

I. Elements of Tensor Calculus ... 693
1 Tensors on a Vector Space .. 699
1.1 Definition ... 699
1.2 First Rank Tensors .. 700
1.3 Second Rank Tensors ... 700
2 Tensor Product of Tensors .. 701
2.1 Definition ... 701
2.2 Examples ... 701
2.3 Product Tensors ... 702
3 Tensor Components ... 703
3.1 Definition ... 703
3.2 Change of Basis .. 704
3.3 Mixed Second Rank Tensors .. 705
3.4 Twice Contravariant or Twice Covariant Second Rank Tensors .. 707
3.5 Components of a Tensor Product 708
4 Contraction .. 708
4.1 Definition of the Contraction of a Tensor 708
4.2 Contracted Multiplication ... 709
4.3 Doubly Contracted Product of Two Tensors 711
4.4 Total Contraction of a Tensor Product 713
4.5 Defining Tensors by Duality .. 713
4.6 Invariants of a Mixed Second Rank Tensor 714
5 Tensors on a Euclidean Vector Space
 5.1 Definition of a Euclidean Space
 5.2 Application: Deformation in a Linear Mapping
 5.3 Isomorphism Between E and E^*
 5.4 Covariant Form of Vectors in E
 5.5 First Rank Euclidean Tensors
 and the Contracted Product
 5.6 Second Rank Euclidean Tensors of Simple
 Product Form and their Contracted Products
 5.7 Second Rank Euclidean Tensors
 5.8 Rank n Euclidean Tensors
 5.9 Choice of Orthonormal Basis in E
 5.10 Principal Axes and Principal Values
 of a Real Symmetric Second Rank Euclidean Tensor
6 Tensor Fields
 6.1 Definition
 6.2 Derivative and Gradient of a Tensor Field
 6.3 Divergence of a Tensor Field
 6.4 Curvilinear Coordinates
Summary of Main Formulas

II. Differential Operators: Basic Formulas
1 Orthonormal Cartesian Coordinates
 1.1 Coordinates
 1.2 Vector Field
 1.3 Scalar Function
 1.4 Second Rank Tensor Field
2 General Cartesian Coordinates
 2.1 Coordinates
 2.2 Vector Field
 2.3 Scalar Function
 2.4 Second Rank Tensor Field
3 Cylindrical Coordinates
 3.1 Parametrisation
 3.2 Vector Field
 3.3 Scalar Function
 3.4 Symmetric Second Rank Tensor Field
4 Spherical Coordinates
 4.1 Parametrisation
 4.2 Vector Field
 4.3 Scalar Function
 4.4 Symmetric Second Rank Tensor Field
III. Elements of Plane Elasticity

1 Plane Problems
2 Plane Strain Thermoelastic Equilibrium
 2.1 Plane Linearised Strain Tensor
 2.2 Plane Strain Displacement Field
 2.3 Plane Strain Thermoelastic Equilibrium
 in a Homogeneous and Isotropic Material
 2.4 Solution by the Displacement Method
 2.5 Solution by the Stress Method
 2.6 Remarks on the Plane Strain
 Two-Dimensional Problem
 2.7 Two-Dimensional Beltrami–Michell Equation
 2.8 Body Forces Deriving from a Potential
 Airy Function
 2.9 Cylindrical Tube Under Pressure
3 Plane Stress Thermoelastic Equilibrium
 3.1 Plane Stress Tensor
 3.2 Plane Stress Field
 3.3 Plane Stress Thermoelastic Equilibrium
 in a Homogeneous and Isotropic Material
 3.4 Solution
 3.5 Cylindrical Tube Under Pressure
Summary of Main Formulas

Bibliography

Subject Index
Handbook of Continuum Mechanics
General Concepts Thermoelasticity
Salencon, J.
2001, XIX, 804 p. With 1 Falttafel., Hardcover
ISBN: 978-3-540-41443-8