The Function of Systems Concepts –
From Systems Theory to Systems Science
Eberhard Umbach .. 51
1 Formulation of the Problem 51
2 Historical Aspects 52
3 Priorities of Systems Concepts with Different Authors 55
4 Criticism of Systems Concepts 56
4.1 Some Critical Authors 56
4.1.1 Ida Hoos (1972) 56
4.1.2 Robert Lilienfeld (1978) 57
4.1.3 Czayka (1974) 59
4.1.4 Kappel and Schwarz (1981) 60
4.1.5 Klaus Mueller 1996 61
4.2 Summary of the Aspects of Criticism 65
5 Evaluation of Criticisms 67
6 Conclusions for Systems Science 69
References and Further Reading 70

Fuzzy Aspects of Systems Science
William Silvert .. 73
1 Introduction
Parameter Estimation in Nonlinear Systems with Dynamic Noise

Nico Stollenwerk 95

1. Introduction 95
2. Epidemic Models 96
3. SI-Model with Demographic Stochasticity 96
4. Analytic Solution for the SI Case 97
5. Empirical Likelihood 99
6. A First More Complex Test Case 100
7. Summary and Prospects 100
8. References 101

Spatial Pattern Formation in a Simple Model of Consumer-Resource System

Alexander Bobyrev, Eugeny Kriksunov, Vladimir Burmensky, Horst Malchow 103

1. Introduction 103
2. The Model 105
2.1 Resource 105
2.2 Consumers 105
2.3 Turbulent Mixing 106
3. Results 106
3.1 General Aspects of the Model Behavior 106
3.2 Influence of the Parameters 107
4. Discussion 108
5. References 109

Scaling Laws for the Prey-Predator Interaction Rates

Zhen-Shan Lin, Bai-Lian Li 111

1. Introduction 111
2. Basic Physical Model for Predating Processes . . . 112
3. Scaling Relations from Hydrodynamic Theory . . 113
4. Scaling Relations from Kinematics and Biomechanics 114
5. Scaling Relations from Kinetic Energy Consideration 115
6. Conclusion 117
7. References 117

Active Motion in Systems with Energy Supply

Werner Ebeling, Frank Schweitzer 119

1. Introduction 119
2. Model of Driven Brownian Dynamics 121
2.1 Equations of Motion and Energy Balance 121
2.2 Non-Linear Friction Functions and Free Motion 123
2.3 Stationary Solutions for the Distribution Function 125
3. One-Dimensional Driven Dynamics Including Forces 127
3.1 Motion in Linear and Ratchet-Like Potentials 127
Contents

1 Introduction ... 181
1.1 Requirements of Environmental Modeling 181
1.2 Concepts of Hybrid Model Development 182
1.3 Aim and Scope of the Development 182
2 Methodological Framework 183
2.1 Hybrid Low Level Petri Nets 183
2.1.1 Structure and Topology 183
2.2 Functional Behavior 185
2.2.1 Switching Conditions 185
2.2.2 Stochastic Time Weighting and Ordinary Differential
Equation Systems ... 185
2.3 Development Platform 186
2.3.1 Functionalities ... 186
2.3.2 Simulation ... 187
3 Case Study 1: Generic Modeling of Crop Growth 188
3.1 Modeling of Crop Development 188
3.2 Petri Net .. 191
3.2.1 Structure and Topology 191
3.2.2 Sub-Net: Physiological Stage Model 191
3.2.3 Sub-Net: Crop Growth 192
3.3 Results ... 192
4 Case Study 2: Meta-Population in Island Biography 194
4.1 Meta-Population in Island Biogeography 194
4.1.1 Insular Zoogeography 194
4.1.2 Reproduction ... 194
4.1.3 The Galápagos Archipelago and the Blue-Winged Grasshopper 195
4.1.4 Overlay of Map and Petri Net 195
4.2 Results ... 196
5 Discussion .. 199
5.1 Concluding Remarks 199
5.2 Outlook .. 199
References ... 200

An Empirically Based Approach to Self-Organization in
Forest Ecosystems
Martin Jenssen .. 203
1 Introduction ... 203
2 The Understanding of Forests as Self-Organizing Ecosystems
in Historical Development 204
Contents

3 The Forest Ecosystem Types as Statistical Ensembles
Corresponding to the Attractors of Natural and Artificial Forests
\[\text{Corresponding to the Attractors of Natural and Artificial Forests} \]
206

4 The Identification and Modeling of Forest Ecosystem Types
in a Multidimensional Ecological Feature Space
\[\text{The Identification and Modeling of Forest Ecosystem Types} \]
\[\text{in a Multidimensional Ecological Feature Space} \]
210

5 Applications to Forest-Ecological Research, Forest Monitoring,
Forestry, and Land-Use Planning
\[\text{Applications to Forest-Ecological Research, Forest Monitoring,} \]
\[\text{Forestry, and Land-Use Planning} \]
217

6 Concluding Remarks: The Need to Use and to Protect
Self-Organization Capacities of Forests
\[\text{Concluding Remarks: The Need to Use and to Protect} \]
\[\text{Self-Organization Capacities of Forests} \]
219

References
\[\text{References} \]
220

Regional-Scale Groundwater Quality: Monitoring and Assessment Using Spatially Referenced Environmental Data
Stefan Fuest, Jürgen Berlekamp, Michael Matthies
\[\text{Regional-Scale Groundwater Quality: Monitoring and} \]
\[\text{Assessment Using Spatially Referenced Environmental Data} \]
223

1 Introduction
\[\text{Introduction} \]
223

2 Data and Methods
\[\text{Data and Methods} \]
224

2.1 Monitoring
\[\text{Monitoring} \]
224

2.2 Nitrogen Balance
\[\text{Nitrogen Balance} \]
225

2.3 Hydrology
\[\text{Hydrology} \]
225

2.4 Nitrate Contents
\[\text{Nitrate Contents} \]
226

3 Results
\[\text{Results} \]
227

4 Discussion
\[\text{Discussion} \]
231

4.1 Monitoring
\[\text{Monitoring} \]
231

4.2 Hydrology
\[\text{Hydrology} \]
231

4.3 Nitrogen Balance
\[\text{Nitrogen Balance} \]
231

4.4 Nitrate Contents
\[\text{Nitrate Contents} \]
232

5 Conclusion
\[\text{Conclusion} \]
232

References
\[\text{References} \]
233

Mathematical Aspects in the Modeling of Urban Environmental Quality
Isabel Fernández, José M. Pacheco
\[\text{Mathematical Aspects in the Modeling} \]
\[\text{of Urban Environmental Quality} \]
235

1 Introduction: Do Urban Ecosystems Exist?
\[\text{Introduction: Do Urban Ecosystems Exist?} \]
235

2 On the Definition of Quality
\[\text{On the Definition of Quality} \]
236

3 Models for the Evolution of Quality
\[\text{Models for the Evolution of Quality} \]
238

3.1 The Simplest Model
\[\text{The Simplest Model} \]
238

3.2 A More Realistic Assumption
\[\text{A More Realistic Assumption} \]
239

3.3 Quality is Destroyed by Population
\[\text{Quality is Destroyed by Population} \]
241

3.4 Quality has a Price
\[\text{Quality has a Price} \]
243

4 Does Quality Always Mean Good Quality?
\[\text{Does Quality Always Mean Good Quality?} \]
245

5 Conclusions and Views
\[\text{Conclusions and Views} \]
247

References
\[\text{References} \]
248
Part IV Technology and Risk Assessment

The Uncertainties of Risk Communication in Knowledge Societies
Gotthard Bechmann, Nico Stehr .. 289
1 Introduction ... 289
2 Knowledge Societies ... 290
3 Knowledge about Knowledge .. 292
4 Remarks on the Status of Risk Research 294
4.1 Criticism of the Formal Concept of Risk 295
4.2 On the Difference Between Decision-Makers and Those Affected by Risks of Decisions 296
5 The Return of Uncertainty in Society 298
6 Risk of Decision in the Context of Fragile Knowledge 300
References ... 302

A Dynamic Account of Rational Decision Making under Uncertainty: The Case of Risk Assessment in Hazardous Technological Systems
Gebhard Geiger ... 305
1 Introduction ... 305
2 A Dynamic Approach to Utility-Oriented Decision Making Under Risk ... 306
2.1 The Conceptual Framework ... 306
2.2 Outline of the Theory of Risk Acceptance 307
2.3 The Utility of Marginally Acceptable Risk 309
2.4 Simple Dynamic Decision Processes 311
3 Applications to Technological Risk Assessment 312
3.1 Variability of Risk Acceptance 312
3.2 Low-Probability, High-Consequence Risks 313
3.3 Risk Aversion Factors .. 314
3.4 Voluntary vs Involuntary Risks 315
3.5 The Starr Curve .. 316
4 Discussion and Conclusion .. 317
References ... 318

Assessing the Risk of Transgenic Crops – The Role of Scientific Belief Systems
Justus Wesseler ... 319
1 Introduction ... 319
2 The Model ... 321
3 Results ... 324
4 Conclusions ... 326
References ... 327
Part V Socio-Economic Systems

On the Interrelation of Social, Economic and Ecological Systems – Theoretical Approaches and Policy Implications on the Feasibility of Comprehensive Sustainability
Stefan Giljum, Friedrich Hinterberger, Jörg Köhn 363

1 Introduction ... 363
2 Sustainable Development and Complex Systems 364
 2.1 Interrelations of Society, Economy and Environment: the Triangle of Sustainability 364
 2.2 Dependencies of (Sub)Systems and the Discussion on Weak vs Strong Sustainability 365
 2.3 Sustainability, System Resilience, and Integration 366
 2.4 Biological vs Cultural Evolution: The Time Factor in Different (Sub)Systems 366
 2.5 Complex Systems and Limited Steering Capacities 368
3 Theoretical Approaches 368
 3.1 Coevolutionary Approaches to Sustainability 368
 3.2 System Approaches: Bossel’s Orientors 369
 3.3 Resource Flows as Interlinkage Indicators 370
4 Policy Recommendations 373
 4.1 Four Levels of Environmental Sustainability 374
 4.2 Four Levels of Competitiveness 375
 4.3 Four Levels of Social Cohesion 376
References .. 377

Dynamic Modeling for Consensus Building in Complex Environmental and Investment Decision Making
Matthias Ruth .. 379

1 Approaches to Problem Solving 379
2 The Role of Dynamic Modeling in Consensus Building and Decision Making 381
3 Stakeholder Involvement in Science and Decision-Making 384
4 Three-Stage Scoping and Consensus Building Process 386
5 Dynamic Modeling for Investment and Policy Decision-Making 387
 5.1 Climate Change Policy Implications for Industrial Sectors 387
 5.2 Climate Change Impacts on Urban Infrastructure Systems and Services 391
6 Summary and Conclusions 396
References .. 397

Multi-Agent Modeling of Resource Systems and Markets: Theoretical Considerations and Simulation Results
Frank Beckenbach .. 401

1 Introduction .. 401
2 Multi-Agent Systems (mas) 402
Integration of Social and Ecological Processes in Quantitative Models for the Management of Water Systems
J.L. de Kok, H.G. Wind

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>421</td>
</tr>
<tr>
<td>1.1 Integration of Social and Ecological Processes in Quantitative System Models</td>
<td>421</td>
</tr>
<tr>
<td>1.2 Integrated Water Management</td>
<td>422</td>
</tr>
<tr>
<td>1.3 Framework of Analysis: Relating Measures to Objectives</td>
<td>422</td>
</tr>
<tr>
<td>2. Case Example 1: Influence of Habitat Condition on Abundance of Reef Fish</td>
<td>425</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>425</td>
</tr>
<tr>
<td>2.2 Methodology</td>
<td>425</td>
</tr>
<tr>
<td>2.3 Results</td>
<td>426</td>
</tr>
<tr>
<td>3. Case Example 2: Relevance of Spatial Differentiation in a Bioeconomic Model for Cockle Fisheries</td>
<td>427</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>427</td>
</tr>
<tr>
<td>3.2 Cockle Fisheries</td>
<td>428</td>
</tr>
<tr>
<td>3.3 Cockle Fisheries: First Order Model</td>
<td>428</td>
</tr>
<tr>
<td>3.4 Results</td>
<td>429</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>431</td>
</tr>
<tr>
<td>4.2 The Model</td>
<td>431</td>
</tr>
<tr>
<td>4.3 Results</td>
<td>433</td>
</tr>
<tr>
<td>5. Discussion</td>
<td>433</td>
</tr>
<tr>
<td>References</td>
<td>435</td>
</tr>
</tbody>
</table>

Researching Alternative, Sustainable Agricultural Systems.
A Modeling Approach by Examples from Denmark
Hugo Fjelsted Alrøe, Erik Steen Kristensen

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>437</td>
</tr>
<tr>
<td>2. The Methods Used in the Assessment of the Overall Consequences of Phasing Out Pesticide Use in Denmark</td>
<td>439</td>
</tr>
<tr>
<td>2.1 The General Methodology</td>
<td>439</td>
</tr>
<tr>
<td>2.1.1 The End Point: The All-Organic Scenario</td>
<td>440</td>
</tr>
</tbody>
</table>
Contents

2.1.2 The Point of Reference: Agriculture Today .. 441
2.1.3 The Consequences .. 442
2.2 The Modeling of an All-Organic Agriculture .. 442
2.2.1 General Preconditions and Presumptions for the Model Structure 443
2.2.2 Crop Composition and Rotation .. 443
2.2.3 Production Levels ... 446
2.2.4 Economy ... 447
3 The Consequences of a Total Conversion to Organic Farming in Denmark ... 447
3.1 Consequences for the Agricultural Production 448
3.2 Nutrient Balances, the Environment and Public Health 448
3.3 Economy and Law ... 452
4 Discussion ... 454
4.1 Methodological Issues ... 455
4.1.1 The Major Questions Concerning the Choice of Scenarios 455
4.1.2 Principles and Preferences .. 457
4.2 Results and Values ... 458
4.2.1 Balance and Sustainability .. 459
4.2.2 Meanings of Sustainability in Agriculture 460
4.2.3 Knowledge and Precaution .. 462
4.2.4 Risks and Precaution in Use of Pesticides 463
4.2.5 Sustainability, Precaution, and Ethics .. 464
4 Conclusion ... 465
References ... 466

An Approach to Define Sustainable Development Indicators

Ildiko Tulbure ... 469

1 Sustainable Development.. 469
2 Operationalization of Sustainable Development 470
3 Sustainable Development Indicators .. 471
4 About Fuzzy Logic .. 473
5 Applying the Fuzzy Logic Based Method to Describe Air Quality 475
6 Conclusions ... 478
References ... 478

Modeling Sustainability – European and German Approaches

Joachim H. Spangenberg, Ines Omann, Andreas Bockermann, Bernd Meyer ... 481

1 Introduction ... 482
1.1 Sustainability ... 482
1.2 Sustainable Growth .. 483
2 The Models .. 486
2.1 PANTA RHEI .. 486
2.2 The SuE Model .. 487
3 Panta Rhei Results ... 488
3.1 Assessing the Results with the Sustainability Criteria 490
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>Industrial Dynamics in Different Scenarios</td>
<td>491</td>
</tr>
<tr>
<td>3.3</td>
<td>Conclusion</td>
<td>492</td>
</tr>
<tr>
<td>4</td>
<td>SuE Results</td>
<td>493</td>
</tr>
<tr>
<td>4.1</td>
<td>Elements of Environmentally Efficient Production</td>
<td>493</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Energy and Material Use Efficiency</td>
<td>493</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Organic Agriculture</td>
<td>493</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Transport Policies</td>
<td>494</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Eco-Efficient Production</td>
<td>494</td>
</tr>
<tr>
<td>4.2</td>
<td>Eco-Efficient Services</td>
<td>495</td>
</tr>
<tr>
<td>4.3</td>
<td>Employment and Technology</td>
<td>495</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Problem Solving Growth</td>
<td>495</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Reducing Working Time</td>
<td>496</td>
</tr>
<tr>
<td>4.4</td>
<td>Towards a Sustainable Development</td>
<td>496</td>
</tr>
<tr>
<td>5</td>
<td>Comparison of the Results</td>
<td>497</td>
</tr>
<tr>
<td>6</td>
<td>Comparison of the Models</td>
<td>498</td>
</tr>
<tr>
<td>7</td>
<td>Conclusions</td>
<td>501</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>502</td>
</tr>
</tbody>
</table>

Constructing Knowledge Landscapes Within the Framework of Geometrically Oriented Evolutionary Theories

Andrea Scharnhorst

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>505</td>
</tr>
</tbody>
</table>

Part VI Psychological and Cognitive Systems

Self-Organization of Cognitive and Interactional Processes

Jürgen Kriz

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>519</td>
</tr>
</tbody>
</table>

1 | Introduction | 519 |
2	The Contribution of Gestalt Psychology	521
3	Iterative Designs	523
4	Pattern Formation, Pattern Recognition, and Completion-Dynamics	525
5	Patterns of Interaction	531
6	Completion Dynamics, Teleology, and Creativity	534
References		536

Dynamics of Perceptual Representation

Michael A. Stadler, John-D. Haynes

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>539</td>
</tr>
</tbody>
</table>

1 | Sensitivity and Flexibility of Perception | 539 |
<p>| 2 | Prägnanz | 541 |</p>
<table>
<thead>
<tr>
<th></th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Local and Global Processing: The Role of Context</td>
</tr>
<tr>
<td>4</td>
<td>Going Beyond the Data Given: Grouping and Completion</td>
</tr>
<tr>
<td>5</td>
<td>Top-Down Modulation</td>
</tr>
<tr>
<td>6</td>
<td>Reduction of Complexity: Non-Linearization and Categorization</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
<tr>
<td>Embodied Cognitive Science: Concepts, Methods and Implications for Psychology</td>
<td>551</td>
</tr>
<tr>
<td>1</td>
<td>Introduction: Problems of ‘Classical’ Artificial Intelligence Research</td>
</tr>
<tr>
<td>2</td>
<td>Autonomous Agents: A New Approach in Cognitive Science</td>
</tr>
<tr>
<td>3</td>
<td>Action and Self-Organization: Conceptualization of a Cognitive System</td>
</tr>
<tr>
<td>4</td>
<td>Implications for Psychology</td>
</tr>
<tr>
<td>5</td>
<td>Discussion</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
<tr>
<td>Changing Environmental Attitudes and Behaviors in Populations: Simulation Studies Based on Socio-Psychological Theories</td>
<td>569</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>The Simulation Approach</td>
</tr>
<tr>
<td>3</td>
<td>Processing Observation of Others’ Behavior Towards the Environment: Applying Bandura’s Theory of Social Learning</td>
</tr>
<tr>
<td>4</td>
<td>Conclusions from the Simulation Experiments</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
<tr>
<td>Vision as Computation, or: Does a Computer Vision System Really Assign Meaning to Images?</td>
<td>579</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Historical Outline of Computer Vision</td>
</tr>
<tr>
<td>3</td>
<td>Knowledge-Based Machine Vision Today</td>
</tr>
<tr>
<td>4</td>
<td>“Understanding” with AI Machines</td>
</tr>
<tr>
<td>5</td>
<td>Conclusion</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
</tbody>
</table>

Subject Index 589
Integrative Systems Approaches to Natural and Social Dynamics
Systems Science 2000
Matthies, M.; Malchow, H.; Kriz, J. (Eds.)
2001, XXVIII, 593 p., Hardcover
ISBN: 978-3-540-41292-2