Contents

Preface .. V

Chapter 1. Affine Connections 1
§1. Connection on a Manifold 1
§2. Covariant Differentiation and Parallel Translation Along a Curve ... 3
§3. Geodesics .. 4
§4. Exponential Mapping and Normal Neighborhoods 7
§5. Whitehead Theorem ... 9
§7. Existence of Leray Coverings 13

Chapter 2. Covariant Differentiation. Curvature 14
§1. Covariant Differentiation 14
§2. The Case of Tensors of Type $(r, 1)$ 16
§3. Torsion Tensor and Symmetric Connections 18
§5. Commutativity of Second Covariant Derivatives 21
§6. Curvature Tensor of an Affine Connection 22
§7. Space with Absolute Parallelism 24
§8. Bianci Identities .. 24
§9. Trace of the Curvature Tensor 27
§10. Ricci Tensor .. 27

Chapter 3. Affine Mappings. Submanifolds 29
§1. Affine Mappings .. 29
§2. Affinities .. 32
§3. Affine Coverings .. 33
§4. Restriction of a Connection to a Submanifold 35
§5. Induced Connection on a Normalized Submanifold 37
§6. Gauss Formula and the Second Fundamental Form of a Normalized Submanifold ... 38
§7. Totally Geodesic and Auto-Parallel Submanifolds 40
§8. Normal Connection and the Weingarten Formula 42
§9. Van der Waerden–Bortolotti Connection 42

Chapter 4. Structural Equations. Local Symmetries 44
§1. Torsion and Curvature Forms 44
§2. Cartan Structural Equations in Polar Coordinates 47
§3. Existence of Affine Local Mappings 50
§4. Locally Symmetric Affine Connection Spaces 51
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>Symmetric Spaces</td>
<td>55</td>
</tr>
<tr>
<td>§1.</td>
<td>Globally Symmetric Spaces</td>
<td>55</td>
</tr>
<tr>
<td>§2.</td>
<td>Germs of Smooth Mappings</td>
<td>55</td>
</tr>
<tr>
<td>§3.</td>
<td>Extensions of Affine Mappings</td>
<td>56</td>
</tr>
<tr>
<td>§4.</td>
<td>Uniqueness Theorem</td>
<td>58</td>
</tr>
<tr>
<td>§5.</td>
<td>Reduction of Locally Symmetric Spaces to Globally Symmetric Spaces</td>
<td>59</td>
</tr>
<tr>
<td>§6.</td>
<td>Properties of Symmetries in Globally Symmetric Spaces</td>
<td>60</td>
</tr>
<tr>
<td>§7.</td>
<td>Symmetric Spaces</td>
<td>61</td>
</tr>
<tr>
<td>§8.</td>
<td>Examples of Symmetric Spaces</td>
<td>62</td>
</tr>
<tr>
<td>§9.</td>
<td>Coincidence of Classes of Symmetric and Globally Symmetric Spaces</td>
<td>63</td>
</tr>
<tr>
<td>6.</td>
<td>Connections on Lie Groups</td>
<td>67</td>
</tr>
<tr>
<td>§1.</td>
<td>Invariant Construction of the Canonical Connection</td>
<td>67</td>
</tr>
<tr>
<td>§2.</td>
<td>Morphisms of Symmetric Spaces as Affine Mappings</td>
<td>69</td>
</tr>
<tr>
<td>§3.</td>
<td>Left-Invariant Connections on a Lie Group</td>
<td>70</td>
</tr>
<tr>
<td>§4.</td>
<td>Cartan Connections</td>
<td>71</td>
</tr>
<tr>
<td>§5.</td>
<td>Left Cartan Connection</td>
<td>73</td>
</tr>
<tr>
<td>§6.</td>
<td>Right-Invariant Vector Fields</td>
<td>74</td>
</tr>
<tr>
<td>§7.</td>
<td>Right Cartan Connection</td>
<td>76</td>
</tr>
<tr>
<td>7.</td>
<td>Lie Functor</td>
<td>77</td>
</tr>
<tr>
<td>§1.</td>
<td>Categories</td>
<td>77</td>
</tr>
<tr>
<td>§2.</td>
<td>Functors</td>
<td>78</td>
</tr>
<tr>
<td>§3.</td>
<td>Lie Functor</td>
<td>79</td>
</tr>
<tr>
<td>§4.</td>
<td>Kernel and Image of a Lie Group Homomorphism</td>
<td>80</td>
</tr>
<tr>
<td>§5.</td>
<td>Campbell–Hausdorff Theorem</td>
<td>82</td>
</tr>
<tr>
<td>§6.</td>
<td>Dynkin Polynomials</td>
<td>83</td>
</tr>
<tr>
<td>§7.</td>
<td>Local Lie Groups</td>
<td>84</td>
</tr>
<tr>
<td>§8.</td>
<td>Bijectivity of the Lie Functor</td>
<td>85</td>
</tr>
<tr>
<td>8.</td>
<td>Affine Fields and Related Topics</td>
<td>87</td>
</tr>
<tr>
<td>§1.</td>
<td>Affine Fields</td>
<td>87</td>
</tr>
<tr>
<td>§2.</td>
<td>Dimension of the Lie Algebra of Affine Fields</td>
<td>89</td>
</tr>
<tr>
<td>§3.</td>
<td>Completeness of Affine Fields</td>
<td>91</td>
</tr>
<tr>
<td>§4.</td>
<td>Mappings of Left and Right Translation on a Symmetric Space</td>
<td>94</td>
</tr>
<tr>
<td>§5.</td>
<td>Derivations on Manifolds with Multiplication</td>
<td>95</td>
</tr>
<tr>
<td>§6.</td>
<td>Lie Algebra of Derivations</td>
<td>96</td>
</tr>
<tr>
<td>§ 7. Involutive Automorphism of the Derivation Algebra of a Symmetric Space</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>§ 8. Symmetric Algebras and Lie Ternaries</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>§ 9. Lie Ternary of a Symmetric Space</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 9. Cartan Theorem .. 101

§ 1. Functor s	101
§ 2. Comparison of the Functor s with the Lie Functor l	103
§ 3. Properties of the Functor s	104
§ 4. Computation of the Lie Ternary of the Space $(\mathcal{G}/\mathcal{H})_\sigma$	105
§ 5. Fundamental Group of the Quotient Space	107
§ 6. Symmetric Space with a Given Lie Ternary	109
§ 7. Coverings	109
§ 8. Cartan Theorem	110
§ 9. Identification of Homogeneous Spaces with Quotient Spaces	111
§ 10. Translations of a Symmetric Space	112
§ 11. Proof of the Cartan Theorem	112

Chapter 10. Palais and Kobayashi Theorems 114

§ 1. Infinite-Dimensional Manifolds and Lie Groups	114
§ 2. Vector Fields Induced by a Lie Group Action	115
§ 3. Palais Theorem	117
§ 4. Kobayashi Theorem	124
§ 5. Affine Automorphism Group	125
§ 6. Automorphism Group of a Symmetric Space	125
§ 7. Translation Group of a Symmetric Space	126

Chapter 11. Lagrangians in Riemannian Spaces 127

§ 1. Riemannian and Pseudo-Riemannian Spaces	127
§ 2. Riemannian Connections	129
§ 3. Geodesics in a Riemannian Space	133
§ 4. Simplest Problem of the Calculus of Variations	134
§ 5. Euler–Lagrange Equations	135
§ 6. Minimum Curves and Extremals	137
§ 7. Regular Lagrangians	139
§ 8. Extremals of the Energy Lagrangian	139

Chapter 12. Metric Properties of Geodesics 141

§ 1. Length of a Curve in a Riemannian Space	141
§ 2. Natural Parameter	142
§ 3. Riemannian Distance and Shortest Arcs	142
§ 4. Extremals of the Length Lagrangian	143
§ 5. Riemannian Coordinates	144
Contents

§6. Gauss Lemma .. 145
§7. Geodesics are Locally Shortest Arcs 148
§8. Smoothness of Shortest Arcs 149
§9. Local Existence of Shortest Arcs 150
§10. Intrinsic Metric ... 151
§11. Hopf–Rinow Theorem .. 153

Chapter 13. Harmonic Functionals and Related Topics 159

§1. Riemannian Volume Element 159
§2. Discriminant Tensor ... 159
§3. Foss–Weyl Formula .. 160
§4. Case $n = 2$.. 162
§5. Laplace Operator on a Riemannian Space 164
§6. The Green Formulas .. 165
§7. Existence of Harmonic Functions with a Nonzero Differential .. 166
§8. Conjugate Harmonic Functions 170
§9. Isothermal Coordinates 172
§10. Semi-Cartesian Coordinates 173
§11. Cartesian Coordinates 175

Chapter 14. Minimal Surfaces 176

§1. Conformal Coordinates 176
§2. Conformal Structures 177
§3. Minimal Surfaces ... 178
§4. Explanation of Their Name 181
§5. Plateau Problem ... 181
§6. Free Relativistic Strings 182
§7. Simplest Problem of the Calculus of Variations for Functions of Two Variables .. 184
§8. Extremals of the Area Functional 186
§9. Case $n = 3$.. 188
§10. Representation of Minimal Surfaces Via Holomorphic Functions .. 189
§11. Weierstrass Formulas .. 190
§12. Adjoined Minimal Surfaces 191

Chapter 15. Curvature in Riemannian Space 193

§1. Riemannian Curvature Tensor 193
§2. Symmetries of the Riemannian Tensor 193
§3. Riemannian Tensor as a Functional 198
§4. Walker Identity and Its Consequences 199
§5. Recurrent Spaces ... 200
§6. Virtual Curvature Tensors 201
§7. Reconstruction of the Bianci Tensor from Its Values on Bivectors .. 202
Contents XI

§8. Sectional Curvatures .. 204
§9. Formula for the Sectional Curvature 205

Chapter 16. Gaussian Curvature 207
§1. Bianchi Tensors as Operators 207
§2. Splitting of Trace-Free Tensors 208
§3. Gaussian Curvature and the Scalar Curvature 209
§4. Curvature Tensor for $n = 2$ 210
§5. Geometric Interpretation of the Sectional Curvature 210
§6. Total Curvature of a Domain on a Surface 212
§7. Rotation of a Vector Field on a Curve 214
§8. Rotation of the Field of Tangent Vectors 215
§9. Gauss–Bonnet Formula 218
§10. Triangulated Surfaces 220
§11. Gauss–Bonnet Theorem 221

Chapter 17. Some Special Tensors 223
§1. Characteristic Numbers 223
§2. Euler Characteristic Number 223
§3. Hodge Operator ... 225
§4. Euler Number of a 4m-Dimensional Manifold 226
§5. Euler Characteristic of a Manifold of an Arbitrary Dimension ... 228
§6. Signature Theorem ... 229
§7. Ricci Tensor of a Riemannian Space 230
§8. Ricci Tensor of a Bianchi Tensor 231
§9. Einstein and Weyl Tensors 232
§10. Case $n = 3$... 234
§11. Einstein Spaces ... 234
§12. Thomas Criterion .. 236

Chapter 18. Surfaces with Conformal Structure 238
§1. Conformal Transformations of a Metric 238
§2. Conformal Curvature Tensor 240
§3. Conformal Equivalences 241
§4. Conformally Flat Spaces 242
§5. Conformally Equivalent Surfaces 243
§6. Classification of Surfaces with a Conformal Structure 243
 6.1. Surfaces of Parabolic Type 244
 6.2. Surfaces of Elliptic Type 245
 6.3. Surfaces of Hyperbolic Type 246
Chapter 19. Mappings and Submanifolds I ... 248
§1. Locally Isometric Mapping of Riemannian Spaces 248
§2. Metric Coverings ... 249
§3. Theorem on Expanding Mappings .. 250
§4. Isometric Mappings of Riemannian Spaces ... 251
§5. Isometry Group of a Riemannian Space .. 252
§6. Elliptic Geometry ... 252
§7. Proof of Proposition 18.1 .. 253
§8. Dimension of the Isometry Group ... 253
§9. Killing Fields .. 254
§10. Riemannian Connection on a Submanifold of a Riemannian Space 255
§11. Gauss and Weingarten Formulas for Submanifolds of Riemannian Spaces .. 257
§12. Normal of the Mean Curvature .. 258
§13. Gauss, Peterson–Codazzi, and Ricci Relations .. 259
§14. Case of a Flat Ambient Space ... 260

Chapter 20. Submanifolds II .. 262
§1. Locally Symmetric Submanifolds ... 262
§2. Compact Submanifolds .. 267
§3. Chern–Kuiper Theorem ... 268
§4. First and Second Quadratic Forms of a Hypersurface 269
§5. Hypersurfaces Whose Points are All Umbilical ... 271
§6. Principal Curvatures of a Hypersurface ... 272
§7. Scalar Curvature of a Hypersurface ... 273
§8. Hypersurfaces That are Einstein Spaces ... 274
§9. Rigidity of the Sphere .. 275

Chapter 21. Fundamental Forms of a Hypersurface ... 276
§1. Sufficient Condition for Rigidity of Hypersurfaces 276
§2. Hypersurfaces with a Given Second Fundamental Form 277
§3. Hypersurfaces with Given First and Second Fundamental Forms 278
§4. Proof of the Uniqueness ... 280
§5. Proof of the Existence .. 281
§6. Proof of a Local Variant of the Existence and Uniqueness Theorem 282

Chapter 22. Spaces of Constant Curvature ... 288
§1. Spaces of Constant Curvature ... 288
§2. Model Spaces of Constant Curvature .. 290
§3. Model Spaces as Hypersurfaces .. 292
§4. Isometries of Model Spaces .. 294
§5. Fixed Points of Isometries .. 296
Chapter 27. Jacobi Theory ... 344

§1. Conjugate Points .. 344
§2. Second Variation of Length 345
§3. Formula for the Second Variation 346
§4. Reduction of the Problem .. 348
§5. Minimal Fields and Jacobi Fields 349
§6. Jacobi Variation .. 351
§7. Jacobi Fields and Conjugate Points 353
§8. Properties of Jacobi Fields 353
§9. Minimality of Normal Jacobi Fields 355
§10. Proof of the Jacobi Theorem 358

Chapter 28. Some Additional Theorems I 360

§1. Cut Points .. 360
§2. Lemma on Continuity ... 361
§3. Cut Loci and Maximal Normal Neighborhoods 362
§4. Proof of Lemma 28.1 .. 364
§5. Spaces of Strictly Positive Ricci Curvature 367
§6. Mayers Theorem ... 368
§7. Spaces of Strictly Positive Sectional Curvature 369
§8. Spaces of Nonpositive Sectional Curvature 370

Chapter 29. Some Additional Theorems II 371

§1. Cartan–Hadamard Theorem 371
§2. Consequence of the Cartan–Hadamard Theorem 374
§3. Cartan–Killing Theorem for $K = 0$ 375
§4. Bochner Theorem .. 375
§5. Operators A_X .. 376
§6. Infinitesimal Variant of the Bochner Theorem 378
§7. Isometry Group of a Compact Space 378

Addendum .. 381

Chapter 30. Smooth Manifolds 381

§1. Introductory Remarks ... 381
§2. Open Sets in the Space \mathbb{R}^n and Their Diffeomorphisms 381
§3. Charts and Atlases .. 383
§4. Maximal Atlases .. 385
§5. Smooth Manifolds .. 386
§6. Smooth Manifold Topology 386
§7. Smooth Structures on a Topological Space 390
§8. DIFF Category ... 391
§9. Transport of Smooth Structures 392
Chapter 31. Tangent Vectors ... 394

§1. Vectors Tangent to a Smooth Manifold 394
§2. Oriented Manifolds .. 396
§3. Differential of a Smooth Mapping 397
§4. Chain Rule .. 398
§5. Gradient of a Smooth Function 399
§6. Étale Mapping Theorem .. 400
§7. Theorem on a Local Coordinate Change 400
§8. Locally Flat Mappings ... 401
§9. Immersions and Submersions 402

Chapter 32. Submanifolds of a Smooth Manifold 404

§1. Submanifolds of a Smooth Manifold 404
§2. Subspace Tangent to a Submanifold 405
§3. Local Representation of a Submanifold 405
§4. Uniqueness of a Submanifold Structure 407
§5. Case of Embedded Submanifolds 407
§6. Tangent Space of a Direct Product 408
§7. Theorem on the Inverse Image of a Regular Value 409
§8. Solution of Sets of Equations 410
§9. Embedding Theorem ... 411

Chapter 33. Vector and Tensor Fields. Differential Forms 413

§1. Tensor Fields ... 413
§2. Vector Fields and Derivations 416
§3. Lie Algebra of Vector Fields 419
§4. Integral Curves of Vector Fields 421
§5. Vector Fields and Flows .. 422
§6. Transport of Vector Fields via Diffeomorphisms 423
§7. Lie Derivative of a Tensor Field 425
§8. Linear Differential Forms .. 426
§9. Differential Forms of an Arbitrary Degree 428
§10. Differential Forms as Functionals on Vector Fields 429
§11. Inner Product of Vector Fields and Differential Forms 430
§12. Transport of a Differential Form via a Smooth Mapping 431
§13. Exterior Differential ... 433

Chapter 34. Vector Bundles .. 436

§1. Bundles and Their Morphisms 436
§2. Vector Bundles ... 438
§3. Sections of Vector Bundles 439
§4. Morphisms of Vector Bundles 440
§5. Trivial Vector Bundles .. 442
Geometry VI
Riemannian Geometry
Postnikov, M.M.
2001, XVIII, 504 p., Hardcover
ISBN: 978-3-540-41108-6