Fig. 2. Bubble size distributions (upper picture) and radial gas volume fraction profiles (lower picture) for different distances from the gas inlet. Superficial velocities: $j_l = 1.0 \text{ m/s}$, $j_g = 0.14 \text{ m/s}$.

Errata
Due to format incompatibility the following figures have not been correctly printed within the book:

Page 105

Bubbly Flows
M. Sommerfeld
ISBN 3-540-40791-X
Springer-Verlag Berlin Heidelberg New York 2004
Fig. 3. Radial volume fraction profiles decomposed for different bubbles sizes at four different distances from the gas inlet. Superficial velocities: \(j_l = 1.0 \text{ m/s}, \ j_g = 0.14 \text{ m/s} \).
Fig. 4. Bubble size distributions (upper picture) and radial gas volume fraction profiles (lower picture) for different distances from the gas inlet. Superficial velocities: $j_i = 0.4$ m/s, $j_g = 0.34$ m/s.
Fig. 6. Experimental bubble size distribution at the gas inlet and experimental and calculated bubble size distributions at the upper end of the test section. Superficial velocity of the liquid: \(j_l = 0.4 \) m/s.
Fig. 7. Experimental bubble size distribution at the gas inlet and experimental and calculated bubble size distributions at the upper end of the test section. Superficial velocity of the liquid: $j_l = 0.64$ m/s.
Fig. 8. Experimental bubble size distribution at the gas inlet and experimental and calculated bubble size distributions at the upper end of the test section. Superficial velocity of the liquid: $j_l = 1.0 \text{ m/s}$.
Bubbly Flows
Analysis, Modelling and Calculation
Sommerfeld, M. (Ed.)
2004, XIV, 351 p., Hardcover
ISBN: 978-3-540-40791-1